Properties

Label 2-1305-1.1-c1-0-39
Degree $2$
Conductor $1305$
Sign $-1$
Analytic cond. $10.4204$
Root an. cond. $3.22807$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.618·2-s − 1.61·4-s − 5-s + 0.236·7-s − 2.23·8-s − 0.618·10-s + 4.23·11-s + 13-s + 0.145·14-s + 1.85·16-s − 1.47·17-s − 6.47·19-s + 1.61·20-s + 2.61·22-s − 4.47·23-s + 25-s + 0.618·26-s − 0.381·28-s − 29-s − 8·31-s + 5.61·32-s − 0.909·34-s − 0.236·35-s − 4.00·38-s + 2.23·40-s − 6·41-s − 6·43-s + ⋯
L(s)  = 1  + 0.437·2-s − 0.809·4-s − 0.447·5-s + 0.0892·7-s − 0.790·8-s − 0.195·10-s + 1.27·11-s + 0.277·13-s + 0.0389·14-s + 0.463·16-s − 0.357·17-s − 1.48·19-s + 0.361·20-s + 0.558·22-s − 0.932·23-s + 0.200·25-s + 0.121·26-s − 0.0721·28-s − 0.185·29-s − 1.43·31-s + 0.993·32-s − 0.156·34-s − 0.0399·35-s − 0.648·38-s + 0.353·40-s − 0.937·41-s − 0.914·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(10.4204\)
Root analytic conductor: \(3.22807\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1305,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + T \)
29 \( 1 + T \)
good2 \( 1 - 0.618T + 2T^{2} \)
7 \( 1 - 0.236T + 7T^{2} \)
11 \( 1 - 4.23T + 11T^{2} \)
13 \( 1 - T + 13T^{2} \)
17 \( 1 + 1.47T + 17T^{2} \)
19 \( 1 + 6.47T + 19T^{2} \)
23 \( 1 + 4.47T + 23T^{2} \)
31 \( 1 + 8T + 31T^{2} \)
37 \( 1 + 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 + 6T + 43T^{2} \)
47 \( 1 - 8.23T + 47T^{2} \)
53 \( 1 + 6.47T + 53T^{2} \)
59 \( 1 + 6T + 59T^{2} \)
61 \( 1 - 0.472T + 61T^{2} \)
67 \( 1 + 14.7T + 67T^{2} \)
71 \( 1 - 2.47T + 71T^{2} \)
73 \( 1 + 6T + 73T^{2} \)
79 \( 1 + 6T + 79T^{2} \)
83 \( 1 - 6.47T + 83T^{2} \)
89 \( 1 - 7.94T + 89T^{2} \)
97 \( 1 + 11.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.001685557717831671157541948911, −8.671828787075929961567890920991, −7.68589258403912868889616635713, −6.56296338581829909620787185137, −5.93066831115428455198880535892, −4.74585782822978976758725290042, −4.07767200831033873658644187654, −3.39296885699055149250019936757, −1.74876433208676821022954593604, 0, 1.74876433208676821022954593604, 3.39296885699055149250019936757, 4.07767200831033873658644187654, 4.74585782822978976758725290042, 5.93066831115428455198880535892, 6.56296338581829909620787185137, 7.68589258403912868889616635713, 8.671828787075929961567890920991, 9.001685557717831671157541948911

Graph of the $Z$-function along the critical line