Properties

Label 2-1305-1.1-c1-0-3
Degree $2$
Conductor $1305$
Sign $1$
Analytic cond. $10.4204$
Root an. cond. $3.22807$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.56·2-s + 4.56·4-s − 5-s − 3.12·7-s − 6.56·8-s + 2.56·10-s + 5.56·11-s − 2·13-s + 8·14-s + 7.68·16-s − 1.12·17-s − 3.12·19-s − 4.56·20-s − 14.2·22-s − 2.43·23-s + 25-s + 5.12·26-s − 14.2·28-s − 29-s + 4·31-s − 6.56·32-s + 2.87·34-s + 3.12·35-s + 10.6·37-s + 8·38-s + 6.56·40-s − 10.6·41-s + ⋯
L(s)  = 1  − 1.81·2-s + 2.28·4-s − 0.447·5-s − 1.18·7-s − 2.31·8-s + 0.810·10-s + 1.67·11-s − 0.554·13-s + 2.13·14-s + 1.92·16-s − 0.272·17-s − 0.716·19-s − 1.01·20-s − 3.03·22-s − 0.508·23-s + 0.200·25-s + 1.00·26-s − 2.69·28-s − 0.185·29-s + 0.718·31-s − 1.15·32-s + 0.493·34-s + 0.527·35-s + 1.75·37-s + 1.29·38-s + 1.03·40-s − 1.66·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(10.4204\)
Root analytic conductor: \(3.22807\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1305,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4705740778\)
\(L(\frac12)\) \(\approx\) \(0.4705740778\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + T \)
29 \( 1 + T \)
good2 \( 1 + 2.56T + 2T^{2} \)
7 \( 1 + 3.12T + 7T^{2} \)
11 \( 1 - 5.56T + 11T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
17 \( 1 + 1.12T + 17T^{2} \)
19 \( 1 + 3.12T + 19T^{2} \)
23 \( 1 + 2.43T + 23T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 - 10.6T + 37T^{2} \)
41 \( 1 + 10.6T + 41T^{2} \)
43 \( 1 + 4.68T + 43T^{2} \)
47 \( 1 - 4.87T + 47T^{2} \)
53 \( 1 - 7.56T + 53T^{2} \)
59 \( 1 + 12T + 59T^{2} \)
61 \( 1 - 9.12T + 61T^{2} \)
67 \( 1 - 13.3T + 67T^{2} \)
71 \( 1 - 11.1T + 71T^{2} \)
73 \( 1 + 10.6T + 73T^{2} \)
79 \( 1 + 12T + 79T^{2} \)
83 \( 1 + 1.56T + 83T^{2} \)
89 \( 1 - 4.24T + 89T^{2} \)
97 \( 1 - 6.68T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.734799860980279499639096330989, −8.857210226163958058104389956260, −8.310415183645855532279745268019, −7.24687457357214400159316646837, −6.66057547523484338102983413680, −6.10136580954572760168751076281, −4.28577465182772932857620041190, −3.21328009972045559003412485900, −2.02181087587075838974186157154, −0.64203889538914671024816812879, 0.64203889538914671024816812879, 2.02181087587075838974186157154, 3.21328009972045559003412485900, 4.28577465182772932857620041190, 6.10136580954572760168751076281, 6.66057547523484338102983413680, 7.24687457357214400159316646837, 8.310415183645855532279745268019, 8.857210226163958058104389956260, 9.734799860980279499639096330989

Graph of the $Z$-function along the critical line