Properties

Label 2-13-13.7-c4-0-0
Degree $2$
Conductor $13$
Sign $-0.560 - 0.828i$
Analytic cond. $1.34380$
Root an. cond. $1.15922$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−3.41 + 0.916i)2-s + (−5.16 + 8.94i)3-s + (−2.99 + 1.73i)4-s + (8.65 + 8.65i)5-s + (9.46 − 35.3i)6-s + (−2.94 − 0.790i)7-s + (48.7 − 48.7i)8-s + (−12.8 − 22.2i)9-s + (−37.5 − 21.6i)10-s + (53.6 + 200. i)11-s − 35.7i·12-s + (−168. + 7.63i)13-s + 10.8·14-s + (−122. + 32.7i)15-s + (−94.2 + 163. i)16-s + (419. − 242. i)17-s + ⋯
L(s)  = 1  + (−0.854 + 0.229i)2-s + (−0.573 + 0.994i)3-s + (−0.187 + 0.108i)4-s + (0.346 + 0.346i)5-s + (0.262 − 0.981i)6-s + (−0.0601 − 0.0161i)7-s + (0.761 − 0.761i)8-s + (−0.158 − 0.274i)9-s + (−0.375 − 0.216i)10-s + (0.443 + 1.65i)11-s − 0.248i·12-s + (−0.998 + 0.0451i)13-s + 0.0551·14-s + (−0.542 + 0.145i)15-s + (−0.368 + 0.637i)16-s + (1.45 − 0.838i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.560 - 0.828i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.560 - 0.828i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13\)
Sign: $-0.560 - 0.828i$
Analytic conductor: \(1.34380\)
Root analytic conductor: \(1.15922\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{13} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 13,\ (\ :2),\ -0.560 - 0.828i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.267245 + 0.503308i\)
\(L(\frac12)\) \(\approx\) \(0.267245 + 0.503308i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 + (168. - 7.63i)T \)
good2 \( 1 + (3.41 - 0.916i)T + (13.8 - 8i)T^{2} \)
3 \( 1 + (5.16 - 8.94i)T + (-40.5 - 70.1i)T^{2} \)
5 \( 1 + (-8.65 - 8.65i)T + 625iT^{2} \)
7 \( 1 + (2.94 + 0.790i)T + (2.07e3 + 1.20e3i)T^{2} \)
11 \( 1 + (-53.6 - 200. i)T + (-1.26e4 + 7.32e3i)T^{2} \)
17 \( 1 + (-419. + 242. i)T + (4.17e4 - 7.23e4i)T^{2} \)
19 \( 1 + (4.81 - 17.9i)T + (-1.12e5 - 6.51e4i)T^{2} \)
23 \( 1 + (-100. - 57.7i)T + (1.39e5 + 2.42e5i)T^{2} \)
29 \( 1 + (59.3 - 102. i)T + (-3.53e5 - 6.12e5i)T^{2} \)
31 \( 1 + (-1.05e3 - 1.05e3i)T + 9.23e5iT^{2} \)
37 \( 1 + (-6.33 - 23.6i)T + (-1.62e6 + 9.37e5i)T^{2} \)
41 \( 1 + (-1.70e3 + 456. i)T + (2.44e6 - 1.41e6i)T^{2} \)
43 \( 1 + (-1.79e3 + 1.03e3i)T + (1.70e6 - 2.96e6i)T^{2} \)
47 \( 1 + (507. - 507. i)T - 4.87e6iT^{2} \)
53 \( 1 + 2.09e3T + 7.89e6T^{2} \)
59 \( 1 + (-1.55e3 - 415. i)T + (1.04e7 + 6.05e6i)T^{2} \)
61 \( 1 + (-1.64e3 - 2.84e3i)T + (-6.92e6 + 1.19e7i)T^{2} \)
67 \( 1 + (1.18e3 - 316. i)T + (1.74e7 - 1.00e7i)T^{2} \)
71 \( 1 + (-263. + 983. i)T + (-2.20e7 - 1.27e7i)T^{2} \)
73 \( 1 + (-5.16e3 + 5.16e3i)T - 2.83e7iT^{2} \)
79 \( 1 + 8.14e3T + 3.89e7T^{2} \)
83 \( 1 + (1.32e3 + 1.32e3i)T + 4.74e7iT^{2} \)
89 \( 1 + (1.13e3 + 4.24e3i)T + (-5.43e7 + 3.13e7i)T^{2} \)
97 \( 1 + (1.71e3 - 6.39e3i)T + (-7.66e7 - 4.42e7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.39442432115643758141916091157, −17.89473427570735481792369737160, −17.08350603036188924915008558495, −15.95985607867702915888603218531, −14.40999067552919611163806787564, −12.28361333922570638413964644526, −10.18268236521975063162065861883, −9.618955056574643509555883938244, −7.32807006469387185852424653131, −4.70426779878909223357889109756, 0.964022301098872677736570105978, 5.83124350202428669737781814932, 7.971080861895525401572519320934, 9.618012604746936781699663043543, 11.35106973608851923964047624380, 12.86748919621061419095158842000, 14.25744657288015328507636958416, 16.79163360692445180591895059559, 17.41206810418610591519754845317, 18.88444264611203363307155055206

Graph of the $Z$-function along the critical line