Properties

Label 2-13-1.1-c9-0-6
Degree $2$
Conductor $13$
Sign $1$
Analytic cond. $6.69546$
Root an. cond. $2.58755$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 38.1·2-s + 47.8·3-s + 944.·4-s − 109.·5-s + 1.82e3·6-s + 5.94e3·7-s + 1.65e4·8-s − 1.73e4·9-s − 4.18e3·10-s − 2.52e4·11-s + 4.52e4·12-s + 2.85e4·13-s + 2.27e5·14-s − 5.25e3·15-s + 1.46e5·16-s + 1.09e5·17-s − 6.63e5·18-s − 9.04e5·19-s − 1.03e5·20-s + 2.84e5·21-s − 9.62e5·22-s − 4.35e5·23-s + 7.90e5·24-s − 1.94e6·25-s + 1.09e6·26-s − 1.77e6·27-s + 5.61e6·28-s + ⋯
L(s)  = 1  + 1.68·2-s + 0.341·3-s + 1.84·4-s − 0.0785·5-s + 0.575·6-s + 0.936·7-s + 1.42·8-s − 0.883·9-s − 0.132·10-s − 0.519·11-s + 0.629·12-s + 0.277·13-s + 1.57·14-s − 0.0268·15-s + 0.560·16-s + 0.317·17-s − 1.49·18-s − 1.59·19-s − 0.144·20-s + 0.319·21-s − 0.875·22-s − 0.324·23-s + 0.486·24-s − 0.993·25-s + 0.467·26-s − 0.642·27-s + 1.72·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13\)
Sign: $1$
Analytic conductor: \(6.69546\)
Root analytic conductor: \(2.58755\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 13,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(4.166673593\)
\(L(\frac12)\) \(\approx\) \(4.166673593\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 - 2.85e4T \)
good2 \( 1 - 38.1T + 512T^{2} \)
3 \( 1 - 47.8T + 1.96e4T^{2} \)
5 \( 1 + 109.T + 1.95e6T^{2} \)
7 \( 1 - 5.94e3T + 4.03e7T^{2} \)
11 \( 1 + 2.52e4T + 2.35e9T^{2} \)
17 \( 1 - 1.09e5T + 1.18e11T^{2} \)
19 \( 1 + 9.04e5T + 3.22e11T^{2} \)
23 \( 1 + 4.35e5T + 1.80e12T^{2} \)
29 \( 1 - 6.44e6T + 1.45e13T^{2} \)
31 \( 1 - 6.62e6T + 2.64e13T^{2} \)
37 \( 1 - 4.14e6T + 1.29e14T^{2} \)
41 \( 1 - 1.49e7T + 3.27e14T^{2} \)
43 \( 1 - 4.01e7T + 5.02e14T^{2} \)
47 \( 1 - 6.30e6T + 1.11e15T^{2} \)
53 \( 1 - 1.53e7T + 3.29e15T^{2} \)
59 \( 1 + 1.52e8T + 8.66e15T^{2} \)
61 \( 1 - 8.66e7T + 1.16e16T^{2} \)
67 \( 1 + 1.01e8T + 2.72e16T^{2} \)
71 \( 1 - 4.13e8T + 4.58e16T^{2} \)
73 \( 1 + 3.14e8T + 5.88e16T^{2} \)
79 \( 1 + 2.00e8T + 1.19e17T^{2} \)
83 \( 1 - 6.34e7T + 1.86e17T^{2} \)
89 \( 1 - 3.47e7T + 3.50e17T^{2} \)
97 \( 1 + 1.25e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.50090066173110072962276206492, −15.69377707630380753340650373156, −14.56582926509755645164753612929, −13.72040950727549817230085663465, −12.22243839575002202312497247507, −10.96755344068652021440322682103, −8.172037666415081195687127974513, −5.99103095338263178456271172566, −4.40347901934242206136518659056, −2.53158953959929218221181292797, 2.53158953959929218221181292797, 4.40347901934242206136518659056, 5.99103095338263178456271172566, 8.172037666415081195687127974513, 10.96755344068652021440322682103, 12.22243839575002202312497247507, 13.72040950727549817230085663465, 14.56582926509755645164753612929, 15.69377707630380753340650373156, 17.50090066173110072962276206492

Graph of the $Z$-function along the critical line