Properties

Label 2-13-1.1-c9-0-2
Degree $2$
Conductor $13$
Sign $1$
Analytic cond. $6.69546$
Root an. cond. $2.58755$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 24.7·2-s + 194.·3-s + 99.0·4-s − 920.·5-s − 4.80e3·6-s + 5.35e3·7-s + 1.02e4·8-s + 1.80e4·9-s + 2.27e4·10-s + 7.92e4·11-s + 1.92e4·12-s + 2.85e4·13-s − 1.32e5·14-s − 1.78e5·15-s − 3.03e5·16-s + 4.52e5·17-s − 4.46e5·18-s + 2.12e5·19-s − 9.11e4·20-s + 1.04e6·21-s − 1.95e6·22-s − 7.59e5·23-s + 1.98e6·24-s − 1.10e6·25-s − 7.05e5·26-s − 3.15e5·27-s + 5.30e5·28-s + ⋯
L(s)  = 1  − 1.09·2-s + 1.38·3-s + 0.193·4-s − 0.658·5-s − 1.51·6-s + 0.843·7-s + 0.881·8-s + 0.917·9-s + 0.719·10-s + 1.63·11-s + 0.267·12-s + 0.277·13-s − 0.921·14-s − 0.911·15-s − 1.15·16-s + 1.31·17-s − 1.00·18-s + 0.374·19-s − 0.127·20-s + 1.16·21-s − 1.78·22-s − 0.565·23-s + 1.22·24-s − 0.566·25-s − 0.302·26-s − 0.114·27-s + 0.163·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13\)
Sign: $1$
Analytic conductor: \(6.69546\)
Root analytic conductor: \(2.58755\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 13,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(1.426438834\)
\(L(\frac12)\) \(\approx\) \(1.426438834\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 - 2.85e4T \)
good2 \( 1 + 24.7T + 512T^{2} \)
3 \( 1 - 194.T + 1.96e4T^{2} \)
5 \( 1 + 920.T + 1.95e6T^{2} \)
7 \( 1 - 5.35e3T + 4.03e7T^{2} \)
11 \( 1 - 7.92e4T + 2.35e9T^{2} \)
17 \( 1 - 4.52e5T + 1.18e11T^{2} \)
19 \( 1 - 2.12e5T + 3.22e11T^{2} \)
23 \( 1 + 7.59e5T + 1.80e12T^{2} \)
29 \( 1 + 9.00e5T + 1.45e13T^{2} \)
31 \( 1 - 2.27e6T + 2.64e13T^{2} \)
37 \( 1 + 4.70e6T + 1.29e14T^{2} \)
41 \( 1 - 3.39e7T + 3.27e14T^{2} \)
43 \( 1 + 2.33e7T + 5.02e14T^{2} \)
47 \( 1 + 5.14e7T + 1.11e15T^{2} \)
53 \( 1 - 1.01e8T + 3.29e15T^{2} \)
59 \( 1 - 1.32e8T + 8.66e15T^{2} \)
61 \( 1 + 1.23e8T + 1.16e16T^{2} \)
67 \( 1 + 2.15e8T + 2.72e16T^{2} \)
71 \( 1 + 2.06e8T + 4.58e16T^{2} \)
73 \( 1 - 3.44e8T + 5.88e16T^{2} \)
79 \( 1 - 5.03e7T + 1.19e17T^{2} \)
83 \( 1 - 8.20e7T + 1.86e17T^{2} \)
89 \( 1 + 6.17e8T + 3.50e17T^{2} \)
97 \( 1 + 9.91e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.92982341369144045536226323469, −16.51473936603934148706872001037, −14.78732209468622680786321621139, −13.90125936530475004012904538721, −11.65231741353258348395217705382, −9.689771883234677143779068138526, −8.521660255554272723527879648770, −7.63330555332640379495250506575, −3.89953980598280880035062853658, −1.41442314638227447995018807528, 1.41442314638227447995018807528, 3.89953980598280880035062853658, 7.63330555332640379495250506575, 8.521660255554272723527879648770, 9.689771883234677143779068138526, 11.65231741353258348395217705382, 13.90125936530475004012904538721, 14.78732209468622680786321621139, 16.51473936603934148706872001037, 17.92982341369144045536226323469

Graph of the $Z$-function along the critical line