Properties

Label 2-13-1.1-c9-0-1
Degree $2$
Conductor $13$
Sign $1$
Analytic cond. $6.69546$
Root an. cond. $2.58755$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.15·2-s − 136.·3-s − 502.·4-s + 2.55e3·5-s − 430.·6-s + 9.39e3·7-s − 3.19e3·8-s − 1.04e3·9-s + 8.04e3·10-s + 4.40e4·11-s + 6.85e4·12-s + 2.85e4·13-s + 2.96e4·14-s − 3.48e5·15-s + 2.46e5·16-s + 2.82e4·17-s − 3.28e3·18-s + 2.73e5·19-s − 1.28e6·20-s − 1.28e6·21-s + 1.38e5·22-s − 1.12e6·23-s + 4.36e5·24-s + 4.57e6·25-s + 8.99e4·26-s + 2.82e6·27-s − 4.71e6·28-s + ⋯
L(s)  = 1  + 0.139·2-s − 0.973·3-s − 0.980·4-s + 1.82·5-s − 0.135·6-s + 1.47·7-s − 0.275·8-s − 0.0529·9-s + 0.254·10-s + 0.908·11-s + 0.954·12-s + 0.277·13-s + 0.206·14-s − 1.77·15-s + 0.942·16-s + 0.0821·17-s − 0.00736·18-s + 0.482·19-s − 1.79·20-s − 1.44·21-s + 0.126·22-s − 0.841·23-s + 0.268·24-s + 2.34·25-s + 0.0386·26-s + 1.02·27-s − 1.45·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13\)
Sign: $1$
Analytic conductor: \(6.69546\)
Root analytic conductor: \(2.58755\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 13,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(1.566822015\)
\(L(\frac12)\) \(\approx\) \(1.566822015\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 - 2.85e4T \)
good2 \( 1 - 3.15T + 512T^{2} \)
3 \( 1 + 136.T + 1.96e4T^{2} \)
5 \( 1 - 2.55e3T + 1.95e6T^{2} \)
7 \( 1 - 9.39e3T + 4.03e7T^{2} \)
11 \( 1 - 4.40e4T + 2.35e9T^{2} \)
17 \( 1 - 2.82e4T + 1.18e11T^{2} \)
19 \( 1 - 2.73e5T + 3.22e11T^{2} \)
23 \( 1 + 1.12e6T + 1.80e12T^{2} \)
29 \( 1 + 1.63e6T + 1.45e13T^{2} \)
31 \( 1 - 6.65e6T + 2.64e13T^{2} \)
37 \( 1 + 1.71e7T + 1.29e14T^{2} \)
41 \( 1 + 5.15e6T + 3.27e14T^{2} \)
43 \( 1 + 1.97e7T + 5.02e14T^{2} \)
47 \( 1 - 4.82e7T + 1.11e15T^{2} \)
53 \( 1 + 3.06e7T + 3.29e15T^{2} \)
59 \( 1 + 1.15e7T + 8.66e15T^{2} \)
61 \( 1 + 3.62e7T + 1.16e16T^{2} \)
67 \( 1 + 6.48e7T + 2.72e16T^{2} \)
71 \( 1 + 1.47e8T + 4.58e16T^{2} \)
73 \( 1 + 3.37e8T + 5.88e16T^{2} \)
79 \( 1 + 2.04e8T + 1.19e17T^{2} \)
83 \( 1 - 7.61e8T + 1.86e17T^{2} \)
89 \( 1 + 8.29e8T + 3.50e17T^{2} \)
97 \( 1 - 1.00e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.51993851458087556467047619237, −17.11310302549505407955097580365, −14.38846152805110707557255487306, −13.72516667981034009408688995383, −11.91916010528480145309860157926, −10.30120333071670590147466338689, −8.807407888513218374358739284116, −5.98066825546955764352594321115, −4.94515656802875929033096965756, −1.36658821899086888741855790842, 1.36658821899086888741855790842, 4.94515656802875929033096965756, 5.98066825546955764352594321115, 8.807407888513218374358739284116, 10.30120333071670590147466338689, 11.91916010528480145309860157926, 13.72516667981034009408688995383, 14.38846152805110707557255487306, 17.11310302549505407955097580365, 17.51993851458087556467047619237

Graph of the $Z$-function along the critical line