Properties

Label 2-13-1.1-c9-0-0
Degree $2$
Conductor $13$
Sign $1$
Analytic cond. $6.69546$
Root an. cond. $2.58755$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 21.3·2-s − 195.·3-s − 57.5·4-s − 1.27e3·5-s + 4.15e3·6-s − 2.27e3·7-s + 1.21e4·8-s + 1.83e4·9-s + 2.72e4·10-s − 7.17e3·11-s + 1.12e4·12-s + 2.85e4·13-s + 4.85e4·14-s + 2.49e5·15-s − 2.29e5·16-s − 4.47e5·17-s − 3.91e5·18-s − 5.28e5·19-s + 7.35e4·20-s + 4.44e5·21-s + 1.53e5·22-s + 2.24e6·23-s − 2.36e6·24-s − 3.22e5·25-s − 6.08e5·26-s + 2.54e5·27-s + 1.31e5·28-s + ⋯
L(s)  = 1  − 0.942·2-s − 1.39·3-s − 0.112·4-s − 0.913·5-s + 1.31·6-s − 0.358·7-s + 1.04·8-s + 0.933·9-s + 0.860·10-s − 0.147·11-s + 0.156·12-s + 0.277·13-s + 0.337·14-s + 1.27·15-s − 0.874·16-s − 1.30·17-s − 0.879·18-s − 0.930·19-s + 0.102·20-s + 0.498·21-s + 0.139·22-s + 1.67·23-s − 1.45·24-s − 0.164·25-s − 0.261·26-s + 0.0921·27-s + 0.0403·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13\)
Sign: $1$
Analytic conductor: \(6.69546\)
Root analytic conductor: \(2.58755\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 13,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(0.2703132214\)
\(L(\frac12)\) \(\approx\) \(0.2703132214\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 - 2.85e4T \)
good2 \( 1 + 21.3T + 512T^{2} \)
3 \( 1 + 195.T + 1.96e4T^{2} \)
5 \( 1 + 1.27e3T + 1.95e6T^{2} \)
7 \( 1 + 2.27e3T + 4.03e7T^{2} \)
11 \( 1 + 7.17e3T + 2.35e9T^{2} \)
17 \( 1 + 4.47e5T + 1.18e11T^{2} \)
19 \( 1 + 5.28e5T + 3.22e11T^{2} \)
23 \( 1 - 2.24e6T + 1.80e12T^{2} \)
29 \( 1 - 5.98e6T + 1.45e13T^{2} \)
31 \( 1 - 1.69e5T + 2.64e13T^{2} \)
37 \( 1 - 1.26e7T + 1.29e14T^{2} \)
41 \( 1 + 2.76e7T + 3.27e14T^{2} \)
43 \( 1 + 2.27e7T + 5.02e14T^{2} \)
47 \( 1 - 5.32e7T + 1.11e15T^{2} \)
53 \( 1 - 3.18e7T + 3.29e15T^{2} \)
59 \( 1 - 1.14e8T + 8.66e15T^{2} \)
61 \( 1 + 7.80e7T + 1.16e16T^{2} \)
67 \( 1 - 8.40e7T + 2.72e16T^{2} \)
71 \( 1 - 1.25e8T + 4.58e16T^{2} \)
73 \( 1 + 1.88e8T + 5.88e16T^{2} \)
79 \( 1 + 4.28e8T + 1.19e17T^{2} \)
83 \( 1 - 2.43e8T + 1.86e17T^{2} \)
89 \( 1 - 2.92e8T + 3.50e17T^{2} \)
97 \( 1 - 1.14e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.61719260024573776824096942031, −16.71068137644433798497739487222, −15.54660906391247832375727503302, −13.08599771896671862098314643816, −11.50343331690142193569242581723, −10.47146690063545857380741999627, −8.602688657565501795948227062440, −6.77715371842856182111550555252, −4.61546529671658897304204988220, −0.55580831322115090404196232425, 0.55580831322115090404196232425, 4.61546529671658897304204988220, 6.77715371842856182111550555252, 8.602688657565501795948227062440, 10.47146690063545857380741999627, 11.50343331690142193569242581723, 13.08599771896671862098314643816, 15.54660906391247832375727503302, 16.71068137644433798497739487222, 17.61719260024573776824096942031

Graph of the $Z$-function along the critical line