L(s) = 1 | + (1.80 − 1.04i)5-s + (0.781 − 1.35i)7-s + (10.8 + 6.25i)11-s + (−11.0 − 19.1i)13-s + 12.6i·17-s − 21.7·19-s + (−28.7 + 16.6i)23-s + (−10.3 + 17.8i)25-s + (−25.7 − 14.8i)29-s + (−6.91 − 11.9i)31-s − 3.26i·35-s + 8.26·37-s + (−43.8 + 25.3i)41-s + (35.5 − 61.5i)43-s + (57.2 + 33.0i)47-s + ⋯ |
L(s) = 1 | + (0.361 − 0.208i)5-s + (0.111 − 0.193i)7-s + (0.984 + 0.568i)11-s + (−0.849 − 1.47i)13-s + 0.747i·17-s − 1.14·19-s + (−1.25 + 0.722i)23-s + (−0.412 + 0.714i)25-s + (−0.888 − 0.513i)29-s + (−0.223 − 0.386i)31-s − 0.0932i·35-s + 0.223·37-s + (−1.06 + 0.617i)41-s + (0.826 − 1.43i)43-s + (1.21 + 0.703i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.893 - 0.449i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.893 - 0.449i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.2777914167\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2777914167\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-1.80 + 1.04i)T + (12.5 - 21.6i)T^{2} \) |
| 7 | \( 1 + (-0.781 + 1.35i)T + (-24.5 - 42.4i)T^{2} \) |
| 11 | \( 1 + (-10.8 - 6.25i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (11.0 + 19.1i)T + (-84.5 + 146. i)T^{2} \) |
| 17 | \( 1 - 12.6iT - 289T^{2} \) |
| 19 | \( 1 + 21.7T + 361T^{2} \) |
| 23 | \( 1 + (28.7 - 16.6i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (25.7 + 14.8i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (6.91 + 11.9i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 - 8.26T + 1.36e3T^{2} \) |
| 41 | \( 1 + (43.8 - 25.3i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-35.5 + 61.5i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-57.2 - 33.0i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 - 6.04iT - 2.80e3T^{2} \) |
| 59 | \( 1 + (-8.01 + 4.62i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (51.9 - 89.8i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (19.8 + 34.4i)T + (-2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 - 18.3iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 68.5T + 5.32e3T^{2} \) |
| 79 | \( 1 + (13.3 - 23.0i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (21.0 + 12.1i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + 111. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (2.51 - 4.35i)T + (-4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.521603084532622356579166133350, −8.746377212691884574262925811869, −7.77071542708473347490993104721, −7.27881431966482640271199180915, −6.03532919237455384877710214358, −5.62656212726964026132905641401, −4.39990489422796241084192224727, −3.74273968079015240718389142484, −2.38646097009609461877663783173, −1.45245661409859772613231178396,
0.06757730456858675625325337391, 1.74983691617457404528609120518, 2.49389780739279722177409394365, 3.88563288466747547451197551898, 4.51528191646484364793063894816, 5.65582598956262590346189255331, 6.50238516979289722427285052974, 6.98293483625265881475463090189, 8.101856607126691896472532019711, 8.958712691218918393484094806119