L(s) = 1 | − 6.63i·5-s − 13.4i·7-s − 18.4·11-s − 18.9·25-s − 29.3i·29-s − 61.4i·31-s − 89.4·35-s − 132.·49-s + 105. i·53-s + 122. i·55-s + 117.·59-s + 143.·73-s + 248. i·77-s − 58i·79-s − 165.·83-s + ⋯ |
L(s) = 1 | − 1.32i·5-s − 1.92i·7-s − 1.67·11-s − 0.758·25-s − 1.01i·29-s − 1.98i·31-s − 2.55·35-s − 2.71·49-s + 1.99i·53-s + 2.22i·55-s + 1.99·59-s + 1.96·73-s + 3.23i·77-s − 0.734i·79-s − 1.98·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.9200338645\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9200338645\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + 6.63iT - 25T^{2} \) |
| 7 | \( 1 + 13.4iT - 49T^{2} \) |
| 11 | \( 1 + 18.4T + 121T^{2} \) |
| 13 | \( 1 - 169T^{2} \) |
| 17 | \( 1 + 289T^{2} \) |
| 19 | \( 1 + 361T^{2} \) |
| 23 | \( 1 - 529T^{2} \) |
| 29 | \( 1 + 29.3iT - 841T^{2} \) |
| 31 | \( 1 + 61.4iT - 961T^{2} \) |
| 37 | \( 1 - 1.36e3T^{2} \) |
| 41 | \( 1 + 1.68e3T^{2} \) |
| 43 | \( 1 + 1.84e3T^{2} \) |
| 47 | \( 1 - 2.20e3T^{2} \) |
| 53 | \( 1 - 105. iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 117.T + 3.48e3T^{2} \) |
| 61 | \( 1 - 3.72e3T^{2} \) |
| 67 | \( 1 + 4.48e3T^{2} \) |
| 71 | \( 1 - 5.04e3T^{2} \) |
| 73 | \( 1 - 143.T + 5.32e3T^{2} \) |
| 79 | \( 1 + 58iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 165.T + 6.88e3T^{2} \) |
| 89 | \( 1 + 7.92e3T^{2} \) |
| 97 | \( 1 - 128.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.475969012776861279342415559234, −7.77174818194062451736951000899, −7.39793098302283196904375365547, −6.13880432051641580775514142678, −5.18694342241594614285157440266, −4.47171985579669143614045262240, −3.81763647901023246962025327102, −2.39550814104313377710871444034, −0.987190930114747468350951789690, −0.27469055374492088567566089264,
2.04010529517000824752362310769, 2.75684779485349219653072775597, 3.33908590069716866549716745599, 5.12876994734724786786549407145, 5.42796900465872366107340795070, 6.49226646980777459113875287998, 7.12835143813770675967687164779, 8.218601955460601789227695407983, 8.661018832761980983147355736189, 9.731197487201931588337897663737