Properties

Label 2-12e3-8.3-c2-0-62
Degree $2$
Conductor $1728$
Sign $-0.707 - 0.707i$
Analytic cond. $47.0845$
Root an. cond. $6.86182$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6i·5-s − 5i·7-s + 6·11-s − 5.19i·13-s − 31.1·17-s − 25.9·19-s − 31.1i·23-s − 11·25-s + 36i·29-s + 26i·31-s − 30·35-s + 25.9i·37-s − 20.7·43-s − 31.1i·47-s + 24·49-s + ⋯
L(s)  = 1  − 1.20i·5-s − 0.714i·7-s + 0.545·11-s − 0.399i·13-s − 1.83·17-s − 1.36·19-s − 1.35i·23-s − 0.440·25-s + 1.24i·29-s + 0.838i·31-s − 0.857·35-s + 0.702i·37-s − 0.483·43-s − 0.663i·47-s + 0.489·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1728\)    =    \(2^{6} \cdot 3^{3}\)
Sign: $-0.707 - 0.707i$
Analytic conductor: \(47.0845\)
Root analytic conductor: \(6.86182\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1728} (1567, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1728,\ (\ :1),\ -0.707 - 0.707i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.3316860112\)
\(L(\frac12)\) \(\approx\) \(0.3316860112\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 6iT - 25T^{2} \)
7 \( 1 + 5iT - 49T^{2} \)
11 \( 1 - 6T + 121T^{2} \)
13 \( 1 + 5.19iT - 169T^{2} \)
17 \( 1 + 31.1T + 289T^{2} \)
19 \( 1 + 25.9T + 361T^{2} \)
23 \( 1 + 31.1iT - 529T^{2} \)
29 \( 1 - 36iT - 841T^{2} \)
31 \( 1 - 26iT - 961T^{2} \)
37 \( 1 - 25.9iT - 1.36e3T^{2} \)
41 \( 1 + 1.68e3T^{2} \)
43 \( 1 + 20.7T + 1.84e3T^{2} \)
47 \( 1 + 31.1iT - 2.20e3T^{2} \)
53 \( 1 + 60iT - 2.80e3T^{2} \)
59 \( 1 - 18T + 3.48e3T^{2} \)
61 \( 1 - 77.9iT - 3.72e3T^{2} \)
67 \( 1 + 77.9T + 4.48e3T^{2} \)
71 \( 1 - 5.04e3T^{2} \)
73 \( 1 - 25T + 5.32e3T^{2} \)
79 \( 1 + 31iT - 6.24e3T^{2} \)
83 \( 1 - 120T + 6.88e3T^{2} \)
89 \( 1 - 155.T + 7.92e3T^{2} \)
97 \( 1 + 85T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.819712361028532635062005568468, −8.085695689094389407064806810480, −6.81753780882897922039367727588, −6.47563444441201173476082539906, −5.08644502037007069735321302136, −4.54614632437950421682803326819, −3.78520773864090544713815829100, −2.33064506367500722962377051374, −1.18305429127662150496365510566, −0.088058742603767786464212094786, 1.96955423347989828952921317692, 2.57351572884541179112075103749, 3.79032042766077811432701743923, 4.53621477639588217910757467323, 5.89822553355396595882968119072, 6.41375517829453595428098809524, 7.09793040932488428381268462789, 8.035042923831095306590329559599, 9.003822528309394924748605836456, 9.455533611312397244716535233474

Graph of the $Z$-function along the critical line