# Properties

 Label 2-12e3-12.11-c1-0-1 Degree $2$ Conductor $1728$ Sign $-1$ Analytic cond. $13.7981$ Root an. cond. $3.71458$ Motivic weight $1$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + 3i·5-s + 1.73i·7-s − 5.19·11-s + 2·13-s − 6i·17-s + 6.92i·19-s − 4·25-s + 6i·29-s + 5.19i·31-s − 5.19·35-s − 8·37-s − 10.3i·43-s − 10.3·47-s + 4·49-s − 9i·53-s + ⋯
 L(s)  = 1 + 1.34i·5-s + 0.654i·7-s − 1.56·11-s + 0.554·13-s − 1.45i·17-s + 1.58i·19-s − 0.800·25-s + 1.11i·29-s + 0.933i·31-s − 0.878·35-s − 1.31·37-s − 1.58i·43-s − 1.51·47-s + 0.571·49-s − 1.23i·53-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$1728$$    =    $$2^{6} \cdot 3^{3}$$ Sign: $-1$ Analytic conductor: $$13.7981$$ Root analytic conductor: $$3.71458$$ Motivic weight: $$1$$ Rational: no Arithmetic: yes Character: $\chi_{1728} (1727, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 1728,\ (\ :1/2),\ -1)$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$0.7298842198$$ $$L(\frac12)$$ $$\approx$$ $$0.7298842198$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1$$
3 $$1$$
good5 $$1 - 3iT - 5T^{2}$$
7 $$1 - 1.73iT - 7T^{2}$$
11 $$1 + 5.19T + 11T^{2}$$
13 $$1 - 2T + 13T^{2}$$
17 $$1 + 6iT - 17T^{2}$$
19 $$1 - 6.92iT - 19T^{2}$$
23 $$1 + 23T^{2}$$
29 $$1 - 6iT - 29T^{2}$$
31 $$1 - 5.19iT - 31T^{2}$$
37 $$1 + 8T + 37T^{2}$$
41 $$1 - 41T^{2}$$
43 $$1 + 10.3iT - 43T^{2}$$
47 $$1 + 10.3T + 47T^{2}$$
53 $$1 + 9iT - 53T^{2}$$
59 $$1 + 10.3T + 59T^{2}$$
61 $$1 - 4T + 61T^{2}$$
67 $$1 + 3.46iT - 67T^{2}$$
71 $$1 + 10.3T + 71T^{2}$$
73 $$1 - T + 73T^{2}$$
79 $$1 - 3.46iT - 79T^{2}$$
83 $$1 - 5.19T + 83T^{2}$$
89 $$1 - 6iT - 89T^{2}$$
97 $$1 + 5T + 97T^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$