Properties

Label 2-12e3-1.1-c3-0-91
Degree $2$
Conductor $1728$
Sign $-1$
Analytic cond. $101.955$
Root an. cond. $10.0972$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 37·7-s + 19·13-s − 163·19-s − 125·25-s − 308·31-s − 323·37-s − 520·43-s + 1.02e3·49-s − 719·61-s − 127·67-s − 919·73-s + 1.38e3·79-s + 703·91-s − 523·97-s + 1.80e3·103-s + 646·109-s + ⋯
L(s)  = 1  + 1.99·7-s + 0.405·13-s − 1.96·19-s − 25-s − 1.78·31-s − 1.43·37-s − 1.84·43-s + 2.99·49-s − 1.50·61-s − 0.231·67-s − 1.47·73-s + 1.97·79-s + 0.809·91-s − 0.547·97-s + 1.72·103-s + 0.567·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1728 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1728\)    =    \(2^{6} \cdot 3^{3}\)
Sign: $-1$
Analytic conductor: \(101.955\)
Root analytic conductor: \(10.0972\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1728,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + p^{3} T^{2} \)
7 \( 1 - 37 T + p^{3} T^{2} \)
11 \( 1 + p^{3} T^{2} \)
13 \( 1 - 19 T + p^{3} T^{2} \)
17 \( 1 + p^{3} T^{2} \)
19 \( 1 + 163 T + p^{3} T^{2} \)
23 \( 1 + p^{3} T^{2} \)
29 \( 1 + p^{3} T^{2} \)
31 \( 1 + 308 T + p^{3} T^{2} \)
37 \( 1 + 323 T + p^{3} T^{2} \)
41 \( 1 + p^{3} T^{2} \)
43 \( 1 + 520 T + p^{3} T^{2} \)
47 \( 1 + p^{3} T^{2} \)
53 \( 1 + p^{3} T^{2} \)
59 \( 1 + p^{3} T^{2} \)
61 \( 1 + 719 T + p^{3} T^{2} \)
67 \( 1 + 127 T + p^{3} T^{2} \)
71 \( 1 + p^{3} T^{2} \)
73 \( 1 + 919 T + p^{3} T^{2} \)
79 \( 1 - 1387 T + p^{3} T^{2} \)
83 \( 1 + p^{3} T^{2} \)
89 \( 1 + p^{3} T^{2} \)
97 \( 1 + 523 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.501741302406500381408280008355, −7.916700916556244319148364586658, −7.09822042336490327950938505073, −6.05636350427777623540752710123, −5.19457605164743382896622988428, −4.47392699962665856285863788563, −3.63860728891274218659461364561, −2.03787750194275909180600459162, −1.61627089543244390839691596148, 0, 1.61627089543244390839691596148, 2.03787750194275909180600459162, 3.63860728891274218659461364561, 4.47392699962665856285863788563, 5.19457605164743382896622988428, 6.05636350427777623540752710123, 7.09822042336490327950938505073, 7.916700916556244319148364586658, 8.501741302406500381408280008355

Graph of the $Z$-function along the critical line