Properties

Label 2-12e2-9.5-c4-0-3
Degree $2$
Conductor $144$
Sign $0.576 - 0.816i$
Analytic cond. $14.8852$
Root an. cond. $3.85814$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−8.32 + 3.42i)3-s + (−30.0 − 17.3i)5-s + (−15.6 − 27.0i)7-s + (57.5 − 57.0i)9-s + (−49.9 + 28.8i)11-s + (36.6 − 63.4i)13-s + (309. + 41.4i)15-s + 386. i·17-s − 115.·19-s + (222. + 171. i)21-s + (474. + 274. i)23-s + (290. + 503. i)25-s + (−282. + 671. i)27-s + (−680. + 392. i)29-s + (272. − 471. i)31-s + ⋯
L(s)  = 1  + (−0.924 + 0.380i)3-s + (−1.20 − 0.694i)5-s + (−0.318 − 0.551i)7-s + (0.709 − 0.704i)9-s + (−0.413 + 0.238i)11-s + (0.216 − 0.375i)13-s + (1.37 + 0.184i)15-s + 1.33i·17-s − 0.320·19-s + (0.504 + 0.388i)21-s + (0.897 + 0.518i)23-s + (0.465 + 0.805i)25-s + (−0.388 + 0.921i)27-s + (−0.808 + 0.466i)29-s + (0.283 − 0.490i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.576 - 0.816i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.576 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(144\)    =    \(2^{4} \cdot 3^{2}\)
Sign: $0.576 - 0.816i$
Analytic conductor: \(14.8852\)
Root analytic conductor: \(3.85814\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{144} (113, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 144,\ (\ :2),\ 0.576 - 0.816i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.581040 + 0.301010i\)
\(L(\frac12)\) \(\approx\) \(0.581040 + 0.301010i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (8.32 - 3.42i)T \)
good5 \( 1 + (30.0 + 17.3i)T + (312.5 + 541. i)T^{2} \)
7 \( 1 + (15.6 + 27.0i)T + (-1.20e3 + 2.07e3i)T^{2} \)
11 \( 1 + (49.9 - 28.8i)T + (7.32e3 - 1.26e4i)T^{2} \)
13 \( 1 + (-36.6 + 63.4i)T + (-1.42e4 - 2.47e4i)T^{2} \)
17 \( 1 - 386. iT - 8.35e4T^{2} \)
19 \( 1 + 115.T + 1.30e5T^{2} \)
23 \( 1 + (-474. - 274. i)T + (1.39e5 + 2.42e5i)T^{2} \)
29 \( 1 + (680. - 392. i)T + (3.53e5 - 6.12e5i)T^{2} \)
31 \( 1 + (-272. + 471. i)T + (-4.61e5 - 7.99e5i)T^{2} \)
37 \( 1 - 898.T + 1.87e6T^{2} \)
41 \( 1 + (-2.24e3 - 1.29e3i)T + (1.41e6 + 2.44e6i)T^{2} \)
43 \( 1 + (-1.00e3 - 1.73e3i)T + (-1.70e6 + 2.96e6i)T^{2} \)
47 \( 1 + (-702. + 405. i)T + (2.43e6 - 4.22e6i)T^{2} \)
53 \( 1 + 2.22e3iT - 7.89e6T^{2} \)
59 \( 1 + (1.30e3 + 756. i)T + (6.05e6 + 1.04e7i)T^{2} \)
61 \( 1 + (-951. - 1.64e3i)T + (-6.92e6 + 1.19e7i)T^{2} \)
67 \( 1 + (-2.25e3 + 3.90e3i)T + (-1.00e7 - 1.74e7i)T^{2} \)
71 \( 1 - 3.99e3iT - 2.54e7T^{2} \)
73 \( 1 + 3.43e3T + 2.83e7T^{2} \)
79 \( 1 + (-601. - 1.04e3i)T + (-1.94e7 + 3.37e7i)T^{2} \)
83 \( 1 + (8.01e3 - 4.62e3i)T + (2.37e7 - 4.11e7i)T^{2} \)
89 \( 1 - 8.92e3iT - 6.27e7T^{2} \)
97 \( 1 + (3.33e3 + 5.77e3i)T + (-4.42e7 + 7.66e7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.66170272578720314187322613323, −11.41657230846332839046406787983, −10.75818784424906247862470369422, −9.610119532480329309439747897684, −8.266241448708943782767076146935, −7.23851503996906681447230631468, −5.86898082948094383433958502185, −4.56749059294113868403036040006, −3.70580722967160254515409121682, −0.887932163109659487177705443573, 0.42294049972860229182528303442, 2.72711895635243261869954406673, 4.34265198817705440088714558250, 5.72587785858315194971460755842, 6.94181461467118142072077370687, 7.66963669802601750990977657147, 9.109795027789512978509517421554, 10.61955851432730501926461399614, 11.32542068034161512331223258034, 12.05853007383559933836963422182

Graph of the $Z$-function along the critical line