Properties

Label 2-12e2-144.83-c1-0-1
Degree $2$
Conductor $144$
Sign $-0.333 - 0.942i$
Analytic cond. $1.14984$
Root an. cond. $1.07230$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.09 + 0.899i)2-s + (−1.21 − 1.23i)3-s + (0.383 − 1.96i)4-s + (−0.726 + 2.70i)5-s + (2.43 + 0.254i)6-s + (−0.00424 + 0.00735i)7-s + (1.34 + 2.48i)8-s + (−0.0469 + 2.99i)9-s + (−1.64 − 3.61i)10-s + (0.804 + 3.00i)11-s + (−2.88 + 1.91i)12-s + (−1.72 + 6.42i)13-s + (−0.00197 − 0.0118i)14-s + (4.22 − 2.39i)15-s + (−3.70 − 1.50i)16-s − 3.37i·17-s + ⋯
L(s)  = 1  + (−0.771 + 0.635i)2-s + (−0.701 − 0.712i)3-s + (0.191 − 0.981i)4-s + (−0.324 + 1.21i)5-s + (0.994 + 0.104i)6-s + (−0.00160 + 0.00277i)7-s + (0.476 + 0.879i)8-s + (−0.0156 + 0.999i)9-s + (−0.519 − 1.14i)10-s + (0.242 + 0.904i)11-s + (−0.833 + 0.552i)12-s + (−0.477 + 1.78i)13-s + (−0.000528 − 0.00316i)14-s + (1.09 − 0.618i)15-s + (−0.926 − 0.376i)16-s − 0.819i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.333 - 0.942i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.333 - 0.942i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(144\)    =    \(2^{4} \cdot 3^{2}\)
Sign: $-0.333 - 0.942i$
Analytic conductor: \(1.14984\)
Root analytic conductor: \(1.07230\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{144} (83, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 144,\ (\ :1/2),\ -0.333 - 0.942i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.281340 + 0.398152i\)
\(L(\frac12)\) \(\approx\) \(0.281340 + 0.398152i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.09 - 0.899i)T \)
3 \( 1 + (1.21 + 1.23i)T \)
good5 \( 1 + (0.726 - 2.70i)T + (-4.33 - 2.5i)T^{2} \)
7 \( 1 + (0.00424 - 0.00735i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-0.804 - 3.00i)T + (-9.52 + 5.5i)T^{2} \)
13 \( 1 + (1.72 - 6.42i)T + (-11.2 - 6.5i)T^{2} \)
17 \( 1 + 3.37iT - 17T^{2} \)
19 \( 1 + (-1.35 + 1.35i)T - 19iT^{2} \)
23 \( 1 + (5.38 - 3.11i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 + (-0.878 - 3.27i)T + (-25.1 + 14.5i)T^{2} \)
31 \( 1 + (-6.70 + 3.86i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + (-0.769 + 0.769i)T - 37iT^{2} \)
41 \( 1 + (2.64 + 4.58i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (5.99 - 1.60i)T + (37.2 - 21.5i)T^{2} \)
47 \( 1 + (0.0955 - 0.165i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (0.750 + 0.750i)T + 53iT^{2} \)
59 \( 1 + (9.08 + 2.43i)T + (51.0 + 29.5i)T^{2} \)
61 \( 1 + (-9.85 + 2.64i)T + (52.8 - 30.5i)T^{2} \)
67 \( 1 + (7.77 + 2.08i)T + (58.0 + 33.5i)T^{2} \)
71 \( 1 + 1.02iT - 71T^{2} \)
73 \( 1 - 7.30iT - 73T^{2} \)
79 \( 1 + (-4.36 - 2.51i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 + (-12.5 + 3.35i)T + (71.8 - 41.5i)T^{2} \)
89 \( 1 - 18.1T + 89T^{2} \)
97 \( 1 + (-1.64 + 2.84i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.77613751805715985785699160589, −11.91373187400257293486436825010, −11.47440927005813299019027794251, −10.30851678117903258073895040638, −9.346716509541023265392256956439, −7.69005001003387697919900964240, −7.01019744920844915772258380391, −6.36537046092574656714349435042, −4.75085134633994741833770841456, −2.10137390828319798802481199637, 0.68907210192245372336824273432, 3.43235699726277995030531137475, 4.74302912485109059767867875025, 6.09013506437391052235670793866, 8.050301272052564070995174462120, 8.642039325865226009313184923904, 9.965323418192064658165584675374, 10.55078285053607828484268625246, 11.85577519653603966452015474998, 12.32660257376451632401086225431

Graph of the $Z$-function along the critical line