# Properties

 Label 2-12e2-144.13-c1-0-13 Degree $2$ Conductor $144$ Sign $-0.999 + 0.0436i$ Analytic cond. $1.14984$ Root an. cond. $1.07230$ Motivic weight $1$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $1$

# Related objects

## Dirichlet series

 L(s)  = 1 + (−1.36 − 0.366i)2-s + (−1.5 + 0.866i)3-s + (1.73 + i)4-s + (−0.267 − i)5-s + (2.36 − 0.633i)6-s + (−2.36 + 1.36i)7-s + (−1.99 − 2i)8-s + (1.5 − 2.59i)9-s + 1.46i·10-s + (−4.23 − 1.13i)11-s − 3.46·12-s + (−3.36 + 0.901i)13-s + (3.73 − 0.999i)14-s + (1.26 + 1.26i)15-s + (1.99 + 3.46i)16-s − 5.73·17-s + ⋯
 L(s)  = 1 + (−0.965 − 0.258i)2-s + (−0.866 + 0.499i)3-s + (0.866 + 0.5i)4-s + (−0.119 − 0.447i)5-s + (0.965 − 0.258i)6-s + (−0.894 + 0.516i)7-s + (−0.707 − 0.707i)8-s + (0.5 − 0.866i)9-s + 0.462i·10-s + (−1.27 − 0.341i)11-s − 0.999·12-s + (−0.933 + 0.250i)13-s + (0.997 − 0.267i)14-s + (0.327 + 0.327i)15-s + (0.499 + 0.866i)16-s − 1.39·17-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0436i)\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0436i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$144$$    =    $$2^{4} \cdot 3^{2}$$ Sign: $-0.999 + 0.0436i$ Analytic conductor: $$1.14984$$ Root analytic conductor: $$1.07230$$ Motivic weight: $$1$$ Rational: no Arithmetic: yes Character: $\chi_{144} (13, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$1$$ Selberg data: $$(2,\ 144,\ (\ :1/2),\ -0.999 + 0.0436i)$$

## Particular Values

 $$L(1)$$ $$=$$ $$0$$ $$L(\frac12)$$ $$=$$ $$0$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1 + (1.36 + 0.366i)T$$
3 $$1 + (1.5 - 0.866i)T$$
good5 $$1 + (0.267 + i)T + (-4.33 + 2.5i)T^{2}$$
7 $$1 + (2.36 - 1.36i)T + (3.5 - 6.06i)T^{2}$$
11 $$1 + (4.23 + 1.13i)T + (9.52 + 5.5i)T^{2}$$
13 $$1 + (3.36 - 0.901i)T + (11.2 - 6.5i)T^{2}$$
17 $$1 + 5.73T + 17T^{2}$$
19 $$1 + (2.36 + 2.36i)T + 19iT^{2}$$
23 $$1 + (-4.09 - 2.36i)T + (11.5 + 19.9i)T^{2}$$
29 $$1 + (0.633 - 2.36i)T + (-25.1 - 14.5i)T^{2}$$
31 $$1 + (0.267 - 0.464i)T + (-15.5 - 26.8i)T^{2}$$
37 $$1 + (-4.73 + 4.73i)T - 37iT^{2}$$
41 $$1 + (-2.59 - 1.5i)T + (20.5 + 35.5i)T^{2}$$
43 $$1 + (8.33 + 2.23i)T + (37.2 + 21.5i)T^{2}$$
47 $$1 + (-3.83 - 6.63i)T + (-23.5 + 40.7i)T^{2}$$
53 $$1 + (7.46 - 7.46i)T - 53iT^{2}$$
59 $$1 + (1.96 + 7.33i)T + (-51.0 + 29.5i)T^{2}$$
61 $$1 + (3 - 11.1i)T + (-52.8 - 30.5i)T^{2}$$
67 $$1 + (-6.59 + 1.76i)T + (58.0 - 33.5i)T^{2}$$
71 $$1 - 2.92iT - 71T^{2}$$
73 $$1 + 6.26iT - 73T^{2}$$
79 $$1 + (6 + 10.3i)T + (-39.5 + 68.4i)T^{2}$$
83 $$1 + (-0.366 + 1.36i)T + (-71.8 - 41.5i)T^{2}$$
89 $$1 + 2iT - 89T^{2}$$
97 $$1 + (5.86 + 10.1i)T + (-48.5 + 84.0i)T^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−12.54018850008471894709126549214, −11.29987979499578249116801848688, −10.59849603715670775130457849865, −9.493053514051915962514721438516, −8.803182800278576681178790141765, −7.24309662101516330627775025940, −6.15713347037993703936757882100, −4.74503044809173584197382618871, −2.79700404624231203986260100087, 0, 2.50903389517737029009421037721, 5.03899878026064847581236989605, 6.50269972909689479506041912865, 7.08865245648435220077871456057, 8.139057893690085841848224931074, 9.766870970907271383751969584107, 10.51747393909866444324423786089, 11.23282193544176049839975743328, 12.57458115351867995140311781522