L(s) = 1 | + (1.37 − 0.313i)2-s + (−0.412 + 1.68i)3-s + (1.80 − 0.864i)4-s + (0.289 + 0.0776i)5-s + (−0.0413 + 2.44i)6-s + (−0.374 + 0.647i)7-s + (2.21 − 1.75i)8-s + (−2.65 − 1.38i)9-s + (0.424 + 0.0162i)10-s + (−2.23 + 0.599i)11-s + (0.710 + 3.39i)12-s + (1.60 + 0.429i)13-s + (−0.312 + 1.01i)14-s + (−0.250 + 0.455i)15-s + (2.50 − 3.11i)16-s − 6.74i·17-s + ⋯ |
L(s) = 1 | + (0.975 − 0.221i)2-s + (−0.238 + 0.971i)3-s + (0.901 − 0.432i)4-s + (0.129 + 0.0347i)5-s + (−0.0168 + 0.999i)6-s + (−0.141 + 0.244i)7-s + (0.783 − 0.621i)8-s + (−0.886 − 0.462i)9-s + (0.134 + 0.00513i)10-s + (−0.674 + 0.180i)11-s + (0.205 + 0.978i)12-s + (0.444 + 0.119i)13-s + (−0.0835 + 0.270i)14-s + (−0.0646 + 0.117i)15-s + (0.626 − 0.779i)16-s − 1.63i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.932 - 0.361i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.932 - 0.361i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.69078 + 0.316211i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.69078 + 0.316211i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.37 + 0.313i)T \) |
| 3 | \( 1 + (0.412 - 1.68i)T \) |
good | 5 | \( 1 + (-0.289 - 0.0776i)T + (4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (0.374 - 0.647i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.23 - 0.599i)T + (9.52 - 5.5i)T^{2} \) |
| 13 | \( 1 + (-1.60 - 0.429i)T + (11.2 + 6.5i)T^{2} \) |
| 17 | \( 1 + 6.74iT - 17T^{2} \) |
| 19 | \( 1 + (-0.621 - 0.621i)T + 19iT^{2} \) |
| 23 | \( 1 + (6.06 - 3.49i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (5.44 - 1.45i)T + (25.1 - 14.5i)T^{2} \) |
| 31 | \( 1 + (-3.13 + 1.81i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-6.74 - 6.74i)T + 37iT^{2} \) |
| 41 | \( 1 + (1.39 + 2.41i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.89 - 7.08i)T + (-37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 + (-0.307 + 0.531i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.68 + 2.68i)T - 53iT^{2} \) |
| 59 | \( 1 + (0.00225 - 0.00841i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-2.72 - 10.1i)T + (-52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (-2.35 + 8.78i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 15.9iT - 71T^{2} \) |
| 73 | \( 1 + 8.17iT - 73T^{2} \) |
| 79 | \( 1 + (7.67 + 4.42i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.353 + 1.32i)T + (-71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 - 15.7T + 89T^{2} \) |
| 97 | \( 1 + (4.62 - 8.00i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.32231075606213348735753476343, −11.93105627305453956123702832573, −11.38803417472234654263041128177, −10.18776804418061071573925580947, −9.469173341628193747359747034544, −7.73935945803061370332765988241, −6.16675096186353543786333771887, −5.26892466771452913433525639915, −4.10159529794346048901906420524, −2.72645727321152744346519573415,
2.12535137948752662973328731355, 3.85241123412653493640607115307, 5.59391039283571654679492599052, 6.28600904827768894119665337722, 7.56343686778542948071358894149, 8.361603617326897747743715954556, 10.39374843793246288207537101183, 11.29253172027245095052613404801, 12.37532955449714182611214274293, 13.09186636103524919170845110509