Properties

Label 2-12e2-1.1-c7-0-2
Degree $2$
Conductor $144$
Sign $1$
Analytic cond. $44.9834$
Root an. cond. $6.70696$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 390·5-s + 64·7-s − 948·11-s − 5.09e3·13-s − 2.83e4·17-s + 8.62e3·19-s − 1.52e4·23-s + 7.39e4·25-s − 3.65e4·29-s + 2.76e5·31-s − 2.49e4·35-s + 2.68e5·37-s + 6.29e5·41-s − 6.85e5·43-s + 5.83e5·47-s − 8.19e5·49-s + 4.28e5·53-s + 3.69e5·55-s + 1.30e6·59-s + 3.00e5·61-s + 1.98e6·65-s + 5.07e5·67-s + 5.56e6·71-s + 1.36e6·73-s − 6.06e4·77-s + 6.91e6·79-s − 4.37e6·83-s + ⋯
L(s)  = 1  − 1.39·5-s + 0.0705·7-s − 0.214·11-s − 0.643·13-s − 1.40·17-s + 0.288·19-s − 0.262·23-s + 0.946·25-s − 0.277·29-s + 1.66·31-s − 0.0984·35-s + 0.871·37-s + 1.42·41-s − 1.31·43-s + 0.819·47-s − 0.995·49-s + 0.394·53-s + 0.299·55-s + 0.828·59-s + 0.169·61-s + 0.897·65-s + 0.206·67-s + 1.84·71-s + 0.411·73-s − 0.0151·77-s + 1.57·79-s − 0.840·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(144\)    =    \(2^{4} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(44.9834\)
Root analytic conductor: \(6.70696\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 144,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.039546941\)
\(L(\frac12)\) \(\approx\) \(1.039546941\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 78 p T + p^{7} T^{2} \)
7 \( 1 - 64 T + p^{7} T^{2} \)
11 \( 1 + 948 T + p^{7} T^{2} \)
13 \( 1 + 5098 T + p^{7} T^{2} \)
17 \( 1 + 28386 T + p^{7} T^{2} \)
19 \( 1 - 8620 T + p^{7} T^{2} \)
23 \( 1 + 15288 T + p^{7} T^{2} \)
29 \( 1 + 36510 T + p^{7} T^{2} \)
31 \( 1 - 276808 T + p^{7} T^{2} \)
37 \( 1 - 268526 T + p^{7} T^{2} \)
41 \( 1 - 629718 T + p^{7} T^{2} \)
43 \( 1 + 685772 T + p^{7} T^{2} \)
47 \( 1 - 583296 T + p^{7} T^{2} \)
53 \( 1 - 428058 T + p^{7} T^{2} \)
59 \( 1 - 1306380 T + p^{7} T^{2} \)
61 \( 1 - 300662 T + p^{7} T^{2} \)
67 \( 1 - 507244 T + p^{7} T^{2} \)
71 \( 1 - 5560632 T + p^{7} T^{2} \)
73 \( 1 - 1369082 T + p^{7} T^{2} \)
79 \( 1 - 6913720 T + p^{7} T^{2} \)
83 \( 1 + 4376748 T + p^{7} T^{2} \)
89 \( 1 - 8528310 T + p^{7} T^{2} \)
97 \( 1 + 8826814 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.69541019043434953352054423345, −10.99743182494695270390021804029, −9.700608685129881041339734081008, −8.430595937428673121836881544600, −7.63796430226373725074195221715, −6.55252849405598754213087188327, −4.87263005145203287059354009368, −3.93630846593330550932936996004, −2.50769877878182521761714632741, −0.56577320808709774363426222447, 0.56577320808709774363426222447, 2.50769877878182521761714632741, 3.93630846593330550932936996004, 4.87263005145203287059354009368, 6.55252849405598754213087188327, 7.63796430226373725074195221715, 8.430595937428673121836881544600, 9.700608685129881041339734081008, 10.99743182494695270390021804029, 11.69541019043434953352054423345

Graph of the $Z$-function along the critical line