Properties

Label 2-12e2-1.1-c13-0-23
Degree $2$
Conductor $144$
Sign $-1$
Analytic cond. $154.412$
Root an. cond. $12.4262$
Motivic weight $13$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.02e4·5-s − 2.35e5·7-s − 1.11e7·11-s + 8.04e6·13-s + 1.17e8·17-s + 2.14e8·19-s + 8.30e8·23-s − 3.08e8·25-s + 1.25e9·29-s − 6.15e9·31-s − 7.10e9·35-s − 5.49e9·37-s + 4.67e9·41-s − 7.11e9·43-s − 2.95e10·47-s − 4.16e10·49-s + 2.04e11·53-s − 3.37e11·55-s − 2.99e10·59-s − 1.34e11·61-s + 2.43e11·65-s − 3.48e11·67-s + 1.31e12·71-s − 1.17e12·73-s + 2.62e12·77-s + 1.07e12·79-s + 1.12e12·83-s + ⋯
L(s)  = 1  + 0.864·5-s − 0.755·7-s − 1.90·11-s + 0.462·13-s + 1.18·17-s + 1.04·19-s + 1.16·23-s − 0.252·25-s + 0.390·29-s − 1.24·31-s − 0.653·35-s − 0.352·37-s + 0.153·41-s − 0.171·43-s − 0.399·47-s − 0.429·49-s + 1.26·53-s − 1.64·55-s − 0.0923·59-s − 0.333·61-s + 0.399·65-s − 0.470·67-s + 1.21·71-s − 0.911·73-s + 1.43·77-s + 0.496·79-s + 0.377·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(144\)    =    \(2^{4} \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(154.412\)
Root analytic conductor: \(12.4262\)
Motivic weight: \(13\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 144,\ (\ :13/2),\ -1)\)

Particular Values

\(L(7)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 6042 p T + p^{13} T^{2} \)
7 \( 1 + 33584 p T + p^{13} T^{2} \)
11 \( 1 + 1016628 p T + p^{13} T^{2} \)
13 \( 1 - 8049614 T + p^{13} T^{2} \)
17 \( 1 - 117494622 T + p^{13} T^{2} \)
19 \( 1 - 214061380 T + p^{13} T^{2} \)
23 \( 1 - 830555544 T + p^{13} T^{2} \)
29 \( 1 - 1252400250 T + p^{13} T^{2} \)
31 \( 1 + 6159350552 T + p^{13} T^{2} \)
37 \( 1 + 5498191402 T + p^{13} T^{2} \)
41 \( 1 - 4678687878 T + p^{13} T^{2} \)
43 \( 1 + 7115013764 T + p^{13} T^{2} \)
47 \( 1 + 29528776992 T + p^{13} T^{2} \)
53 \( 1 - 204125042466 T + p^{13} T^{2} \)
59 \( 1 + 29909821020 T + p^{13} T^{2} \)
61 \( 1 + 134392006738 T + p^{13} T^{2} \)
67 \( 1 + 348518801948 T + p^{13} T^{2} \)
71 \( 1 - 1314335409192 T + p^{13} T^{2} \)
73 \( 1 + 1178875922326 T + p^{13} T^{2} \)
79 \( 1 - 1072420659640 T + p^{13} T^{2} \)
83 \( 1 - 1124025139644 T + p^{13} T^{2} \)
89 \( 1 + 2235610909530 T + p^{13} T^{2} \)
97 \( 1 + 14215257165502 T + p^{13} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.09786316590682164226055130260, −9.382951263980113755599942969543, −8.064762676808942534840313421321, −7.06300396738053541972658154443, −5.71987630735744545464560323771, −5.21117873526440589289883353647, −3.39370313045326164994175883110, −2.59393981979938306762196898919, −1.25785958645119799849380504492, 0, 1.25785958645119799849380504492, 2.59393981979938306762196898919, 3.39370313045326164994175883110, 5.21117873526440589289883353647, 5.71987630735744545464560323771, 7.06300396738053541972658154443, 8.064762676808942534840313421321, 9.382951263980113755599942969543, 10.09786316590682164226055130260

Graph of the $Z$-function along the critical line