L(s) = 1 | − 5-s − i·9-s + (1 + i)13-s + (1 − i)17-s + 25-s − 2i·29-s + (1 − i)37-s + i·45-s + i·49-s + (1 + i)53-s − 2·61-s + (−1 − i)65-s + (1 + i)73-s − 81-s + (−1 + i)85-s + ⋯ |
L(s) = 1 | − 5-s − i·9-s + (1 + i)13-s + (1 − i)17-s + 25-s − 2i·29-s + (1 − i)37-s + i·45-s + i·49-s + (1 + i)53-s − 2·61-s + (−1 − i)65-s + (1 + i)73-s − 81-s + (−1 + i)85-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9419259409\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9419259409\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
good | 3 | \( 1 + iT^{2} \) |
| 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (-1 - i)T + iT^{2} \) |
| 17 | \( 1 + (-1 + i)T - iT^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 + 2iT - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (-1 + i)T - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (-1 - i)T + iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + 2T + T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-1 - i)T + iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (1 - i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.541016757058697470036630218576, −9.118745913911783528720798821165, −8.092599551787920567021759210917, −7.42542116703009233902558842530, −6.51986457341453147936401563017, −5.74152591236722501722998041618, −4.36930217022453993242359497317, −3.84261966850104562744588414904, −2.77534599961601714499993196527, −0.983393780236680096951006918568,
1.37751409789178852066729876465, 3.03584198863477598145321032218, 3.75065756697698574979972435297, 4.87939390352804432372898037592, 5.65653986091227342457376095456, 6.73332600072160857764650719305, 7.77302220976282051780413503769, 8.146170534884785783734466792720, 8.886505133414054586252532406794, 10.23711400181185350561866138118