L(s) = 1 | − 5-s − i·9-s + (−1 − i)13-s + (−1 − i)17-s + 25-s + (1 − i)37-s + i·45-s − i·49-s + (−1 − i)53-s + (1 + i)65-s + (−1 + i)73-s − 81-s + (1 + i)85-s + (1 + i)97-s + 2i·101-s + ⋯ |
L(s) = 1 | − 5-s − i·9-s + (−1 − i)13-s + (−1 − i)17-s + 25-s + (1 − i)37-s + i·45-s − i·49-s + (−1 − i)53-s + (1 + i)65-s + (−1 + i)73-s − 81-s + (1 + i)85-s + (1 + i)97-s + 2i·101-s + ⋯ |
Λ(s)=(=(1280s/2ΓC(s)L(s)(−0.229+0.973i)Λ(1−s)
Λ(s)=(=(1280s/2ΓC(s)L(s)(−0.229+0.973i)Λ(1−s)
Degree: |
2 |
Conductor: |
1280
= 28⋅5
|
Sign: |
−0.229+0.973i
|
Analytic conductor: |
0.638803 |
Root analytic conductor: |
0.799251 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1280(897,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1280, ( :0), −0.229+0.973i)
|
Particular Values
L(21) |
≈ |
0.6285584519 |
L(21) |
≈ |
0.6285584519 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
good | 3 | 1+iT2 |
| 7 | 1+iT2 |
| 11 | 1−T2 |
| 13 | 1+(1+i)T+iT2 |
| 17 | 1+(1+i)T+iT2 |
| 19 | 1+T2 |
| 23 | 1−iT2 |
| 29 | 1+T2 |
| 31 | 1+T2 |
| 37 | 1+(−1+i)T−iT2 |
| 41 | 1+T2 |
| 43 | 1+iT2 |
| 47 | 1+iT2 |
| 53 | 1+(1+i)T+iT2 |
| 59 | 1+T2 |
| 61 | 1−T2 |
| 67 | 1−iT2 |
| 71 | 1+T2 |
| 73 | 1+(1−i)T−iT2 |
| 79 | 1−T2 |
| 83 | 1+iT2 |
| 89 | 1−T2 |
| 97 | 1+(−1−i)T+iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.549043106157519284353947974808, −8.862133571389173939098725474424, −7.925364502967568629946506837545, −7.23804426260962121104767848944, −6.49651926228537385469881830752, −5.30401274665158675155824955763, −4.45135557577723848392513528084, −3.48790581430571638952733573985, −2.55676696881410933695317694536, −0.52541391397976017058311200122,
1.86337020966777733282503932303, 2.99792808947332476694819824521, 4.43813509290071215277046417838, 4.58972446652015617176234769491, 6.01829734414518287410648994780, 6.98510380780720997632179167339, 7.67555328746532838095396762153, 8.390080089110390140436706790188, 9.194119156098533152783828734163, 10.17838798312829118638460205802