L(s) = 1 | − 5-s − i·9-s + (−1 − i)13-s + (−1 − i)17-s + 25-s + (1 − i)37-s + i·45-s − i·49-s + (−1 − i)53-s + (1 + i)65-s + (−1 + i)73-s − 81-s + (1 + i)85-s + (1 + i)97-s + 2i·101-s + ⋯ |
L(s) = 1 | − 5-s − i·9-s + (−1 − i)13-s + (−1 − i)17-s + 25-s + (1 − i)37-s + i·45-s − i·49-s + (−1 − i)53-s + (1 + i)65-s + (−1 + i)73-s − 81-s + (1 + i)85-s + (1 + i)97-s + 2i·101-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6285584519\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6285584519\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
good | 3 | \( 1 + iT^{2} \) |
| 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + (1 + i)T + iT^{2} \) |
| 17 | \( 1 + (1 + i)T + iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (-1 + i)T - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + (1 + i)T + iT^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (1 - i)T - iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-1 - i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.549043106157519284353947974808, −8.862133571389173939098725474424, −7.925364502967568629946506837545, −7.23804426260962121104767848944, −6.49651926228537385469881830752, −5.30401274665158675155824955763, −4.45135557577723848392513528084, −3.48790581430571638952733573985, −2.55676696881410933695317694536, −0.52541391397976017058311200122,
1.86337020966777733282503932303, 2.99792808947332476694819824521, 4.43813509290071215277046417838, 4.58972446652015617176234769491, 6.01829734414518287410648994780, 6.98510380780720997632179167339, 7.67555328746532838095396762153, 8.390080089110390140436706790188, 9.194119156098533152783828734163, 10.17838798312829118638460205802