L(s) = 1 | + (1.73 − 1.73i)3-s + (2 − i)5-s + (1.73 − 1.73i)7-s − 2.99i·9-s + 3.46·11-s + (−1 − i)13-s + (1.73 − 5.19i)15-s + (1 + i)17-s + 6.92i·19-s − 5.99i·21-s + (−1.73 − 1.73i)23-s + (3 − 4i)25-s − 4·29-s + 3.46i·31-s + (5.99 − 5.99i)33-s + ⋯ |
L(s) = 1 | + (0.999 − 0.999i)3-s + (0.894 − 0.447i)5-s + (0.654 − 0.654i)7-s − 0.999i·9-s + 1.04·11-s + (−0.277 − 0.277i)13-s + (0.447 − 1.34i)15-s + (0.242 + 0.242i)17-s + 1.58i·19-s − 1.30i·21-s + (−0.361 − 0.361i)23-s + (0.600 − 0.800i)25-s − 0.742·29-s + 0.622i·31-s + (1.04 − 1.04i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.229 + 0.973i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.036096149\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.036096149\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-2 + i)T \) |
good | 3 | \( 1 + (-1.73 + 1.73i)T - 3iT^{2} \) |
| 7 | \( 1 + (-1.73 + 1.73i)T - 7iT^{2} \) |
| 11 | \( 1 - 3.46T + 11T^{2} \) |
| 13 | \( 1 + (1 + i)T + 13iT^{2} \) |
| 17 | \( 1 + (-1 - i)T + 17iT^{2} \) |
| 19 | \( 1 - 6.92iT - 19T^{2} \) |
| 23 | \( 1 + (1.73 + 1.73i)T + 23iT^{2} \) |
| 29 | \( 1 + 4T + 29T^{2} \) |
| 31 | \( 1 - 3.46iT - 31T^{2} \) |
| 37 | \( 1 + (5 - 5i)T - 37iT^{2} \) |
| 41 | \( 1 + 2T + 41T^{2} \) |
| 43 | \( 1 + (1.73 - 1.73i)T - 43iT^{2} \) |
| 47 | \( 1 + (1.73 - 1.73i)T - 47iT^{2} \) |
| 53 | \( 1 + (7 + 7i)T + 53iT^{2} \) |
| 59 | \( 1 - 6.92iT - 59T^{2} \) |
| 61 | \( 1 + 6iT - 61T^{2} \) |
| 67 | \( 1 + (5.19 + 5.19i)T + 67iT^{2} \) |
| 71 | \( 1 - 10.3iT - 71T^{2} \) |
| 73 | \( 1 + (-7 + 7i)T - 73iT^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + (12.1 - 12.1i)T - 83iT^{2} \) |
| 89 | \( 1 - 8iT - 89T^{2} \) |
| 97 | \( 1 + (7 + 7i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.435012313204121092761444810891, −8.389767983189687045933286466531, −8.109927605313039924114717107155, −7.10036458298342385290836432137, −6.36958317014230045583027012553, −5.36384834673605009816578433895, −4.21059687140627401186053286543, −3.15169424762984126071456811197, −1.75791555210869630123897030211, −1.39638625675540828333485341571,
1.82968493364292697137694916842, 2.69345042220394502671205957342, 3.67030678293651480734874533900, 4.67693418926345662381358637912, 5.48973860372372011744900298779, 6.55066560635412489296890055329, 7.45793580869095546246580441300, 8.607182397100632813797407148349, 9.203860668932615252031428695384, 9.526625433395182113369164723701