L(s) = 1 | + (−2 + 2i)3-s + (1 − 2i)5-s + (2 + 2i)7-s − 5i·9-s − 4i·11-s + (−3 − 3i)13-s + (2 + 6i)15-s + (−3 + 3i)17-s − 8·21-s + (−6 + 6i)23-s + (−3 − 4i)25-s + (4 + 4i)27-s + 2i·29-s + 4i·31-s + (8 + 8i)33-s + ⋯ |
L(s) = 1 | + (−1.15 + 1.15i)3-s + (0.447 − 0.894i)5-s + (0.755 + 0.755i)7-s − 1.66i·9-s − 1.20i·11-s + (−0.832 − 0.832i)13-s + (0.516 + 1.54i)15-s + (−0.727 + 0.727i)17-s − 1.74·21-s + (−1.25 + 1.25i)23-s + (−0.600 − 0.800i)25-s + (0.769 + 0.769i)27-s + 0.371i·29-s + 0.718i·31-s + (1.39 + 1.39i)33-s + ⋯ |
Λ(s)=(=(1280s/2ΓC(s)L(s)(−0.850+0.525i)Λ(2−s)
Λ(s)=(=(1280s/2ΓC(s+1/2)L(s)(−0.850+0.525i)Λ(1−s)
Degree: |
2 |
Conductor: |
1280
= 28⋅5
|
Sign: |
−0.850+0.525i
|
Analytic conductor: |
10.2208 |
Root analytic conductor: |
3.19700 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1280(1023,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 1280, ( :1/2), −0.850+0.525i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−1+2i)T |
good | 3 | 1+(2−2i)T−3iT2 |
| 7 | 1+(−2−2i)T+7iT2 |
| 11 | 1+4iT−11T2 |
| 13 | 1+(3+3i)T+13iT2 |
| 17 | 1+(3−3i)T−17iT2 |
| 19 | 1+19T2 |
| 23 | 1+(6−6i)T−23iT2 |
| 29 | 1−2iT−29T2 |
| 31 | 1−4iT−31T2 |
| 37 | 1+(3−3i)T−37iT2 |
| 41 | 1+41T2 |
| 43 | 1+(6−6i)T−43iT2 |
| 47 | 1+(6+6i)T+47iT2 |
| 53 | 1+(3+3i)T+53iT2 |
| 59 | 1+8T+59T2 |
| 61 | 1+6T+61T2 |
| 67 | 1+(−6−6i)T+67iT2 |
| 71 | 1+12iT−71T2 |
| 73 | 1+(−5−5i)T+73iT2 |
| 79 | 1+8T+79T2 |
| 83 | 1+(6−6i)T−83iT2 |
| 89 | 1−89T2 |
| 97 | 1+(−11+11i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.510068305118607769667969282961, −8.581502404159138738954688101602, −8.060088137276290538705919340885, −6.40657561447329141454833232388, −5.61326405579647884905062035838, −5.24383173031467372298135042947, −4.49158944607474995317860323441, −3.33950870353528692256487602720, −1.68375498005259898135911888355, 0,
1.74207533632421601016936417025, 2.33522688916145357185460140694, 4.30475816928882914416401626860, 4.96278191408211701351926304571, 6.14587873090926796891878724028, 6.78014348839458342586090814749, 7.30227835306332592970253743319, 7.908996560457538008532018614127, 9.408887756577383664907424207566