L(s) = 1 | + (−2 + 2i)3-s + (1 − 2i)5-s + (2 + 2i)7-s − 5i·9-s − 4i·11-s + (−3 − 3i)13-s + (2 + 6i)15-s + (−3 + 3i)17-s − 8·21-s + (−6 + 6i)23-s + (−3 − 4i)25-s + (4 + 4i)27-s + 2i·29-s + 4i·31-s + (8 + 8i)33-s + ⋯ |
L(s) = 1 | + (−1.15 + 1.15i)3-s + (0.447 − 0.894i)5-s + (0.755 + 0.755i)7-s − 1.66i·9-s − 1.20i·11-s + (−0.832 − 0.832i)13-s + (0.516 + 1.54i)15-s + (−0.727 + 0.727i)17-s − 1.74·21-s + (−1.25 + 1.25i)23-s + (−0.600 − 0.800i)25-s + (0.769 + 0.769i)27-s + 0.371i·29-s + 0.718i·31-s + (1.39 + 1.39i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.850 + 0.525i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.850 + 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1 + 2i)T \) |
good | 3 | \( 1 + (2 - 2i)T - 3iT^{2} \) |
| 7 | \( 1 + (-2 - 2i)T + 7iT^{2} \) |
| 11 | \( 1 + 4iT - 11T^{2} \) |
| 13 | \( 1 + (3 + 3i)T + 13iT^{2} \) |
| 17 | \( 1 + (3 - 3i)T - 17iT^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 + (6 - 6i)T - 23iT^{2} \) |
| 29 | \( 1 - 2iT - 29T^{2} \) |
| 31 | \( 1 - 4iT - 31T^{2} \) |
| 37 | \( 1 + (3 - 3i)T - 37iT^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 + (6 - 6i)T - 43iT^{2} \) |
| 47 | \( 1 + (6 + 6i)T + 47iT^{2} \) |
| 53 | \( 1 + (3 + 3i)T + 53iT^{2} \) |
| 59 | \( 1 + 8T + 59T^{2} \) |
| 61 | \( 1 + 6T + 61T^{2} \) |
| 67 | \( 1 + (-6 - 6i)T + 67iT^{2} \) |
| 71 | \( 1 + 12iT - 71T^{2} \) |
| 73 | \( 1 + (-5 - 5i)T + 73iT^{2} \) |
| 79 | \( 1 + 8T + 79T^{2} \) |
| 83 | \( 1 + (6 - 6i)T - 83iT^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 + (-11 + 11i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.510068305118607769667969282961, −8.581502404159138738954688101602, −8.060088137276290538705919340885, −6.40657561447329141454833232388, −5.61326405579647884905062035838, −5.24383173031467372298135042947, −4.49158944607474995317860323441, −3.33950870353528692256487602720, −1.68375498005259898135911888355, 0,
1.74207533632421601016936417025, 2.33522688916145357185460140694, 4.30475816928882914416401626860, 4.96278191408211701351926304571, 6.14587873090926796891878724028, 6.78014348839458342586090814749, 7.30227835306332592970253743319, 7.908996560457538008532018614127, 9.408887756577383664907424207566