Properties

Label 2-1275-1.1-c3-0-85
Degree $2$
Conductor $1275$
Sign $-1$
Analytic cond. $75.2274$
Root an. cond. $8.67337$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3·3-s − 7·4-s − 3·6-s + 2·7-s − 15·8-s + 9·9-s − 48·11-s + 21·12-s + 14·13-s + 2·14-s + 41·16-s + 17·17-s + 9·18-s + 92·19-s − 6·21-s − 48·22-s + 122·23-s + 45·24-s + 14·26-s − 27·27-s − 14·28-s − 36·29-s − 182·31-s + 161·32-s + 144·33-s + 17·34-s + ⋯
L(s)  = 1  + 0.353·2-s − 0.577·3-s − 7/8·4-s − 0.204·6-s + 0.107·7-s − 0.662·8-s + 1/3·9-s − 1.31·11-s + 0.505·12-s + 0.298·13-s + 0.0381·14-s + 0.640·16-s + 0.242·17-s + 0.117·18-s + 1.11·19-s − 0.0623·21-s − 0.465·22-s + 1.10·23-s + 0.382·24-s + 0.105·26-s − 0.192·27-s − 0.0944·28-s − 0.230·29-s − 1.05·31-s + 0.889·32-s + 0.759·33-s + 0.0857·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1275 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1275\)    =    \(3 \cdot 5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(75.2274\)
Root analytic conductor: \(8.67337\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1275,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + p T \)
5 \( 1 \)
17 \( 1 - p T \)
good2 \( 1 - T + p^{3} T^{2} \)
7 \( 1 - 2 T + p^{3} T^{2} \)
11 \( 1 + 48 T + p^{3} T^{2} \)
13 \( 1 - 14 T + p^{3} T^{2} \)
19 \( 1 - 92 T + p^{3} T^{2} \)
23 \( 1 - 122 T + p^{3} T^{2} \)
29 \( 1 + 36 T + p^{3} T^{2} \)
31 \( 1 + 182 T + p^{3} T^{2} \)
37 \( 1 + 76 T + p^{3} T^{2} \)
41 \( 1 - 294 T + p^{3} T^{2} \)
43 \( 1 - 428 T + p^{3} T^{2} \)
47 \( 1 - 12 T + p^{3} T^{2} \)
53 \( 1 - 234 T + p^{3} T^{2} \)
59 \( 1 + 540 T + p^{3} T^{2} \)
61 \( 1 + 820 T + p^{3} T^{2} \)
67 \( 1 + 700 T + p^{3} T^{2} \)
71 \( 1 - 794 T + p^{3} T^{2} \)
73 \( 1 - 1038 T + p^{3} T^{2} \)
79 \( 1 - 858 T + p^{3} T^{2} \)
83 \( 1 + 1052 T + p^{3} T^{2} \)
89 \( 1 - 1102 T + p^{3} T^{2} \)
97 \( 1 + 710 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.085947962424957233228468254751, −7.945037163559729410882469179557, −7.38318166632617314076489936736, −6.08904897795350236406836497966, −5.34456563781486096313207021227, −4.85732439664041751696266099206, −3.74453756399761346483875763335, −2.78104058504585025893359721349, −1.12082469356584300253359302357, 0, 1.12082469356584300253359302357, 2.78104058504585025893359721349, 3.74453756399761346483875763335, 4.85732439664041751696266099206, 5.34456563781486096313207021227, 6.08904897795350236406836497966, 7.38318166632617314076489936736, 7.945037163559729410882469179557, 9.085947962424957233228468254751

Graph of the $Z$-function along the critical line