| L(s) = 1 | + 0.618·5-s + 9-s + 1.61·11-s − 1.61·13-s − 0.618·19-s − 0.618·23-s − 0.618·25-s + 1.61·31-s + 0.618·45-s + 49-s + 1.00·55-s − 1.00·65-s − 0.618·67-s + 0.618·73-s − 79-s + 81-s − 2·83-s − 1.61·89-s − 0.381·95-s + 0.618·97-s + 1.61·99-s − 1.61·101-s − 0.381·115-s − 1.61·117-s + ⋯ |
| L(s) = 1 | + 0.618·5-s + 9-s + 1.61·11-s − 1.61·13-s − 0.618·19-s − 0.618·23-s − 0.618·25-s + 1.61·31-s + 0.618·45-s + 49-s + 1.00·55-s − 1.00·65-s − 0.618·67-s + 0.618·73-s − 79-s + 81-s − 2·83-s − 1.61·89-s − 0.381·95-s + 0.618·97-s + 1.61·99-s − 1.61·101-s − 0.381·115-s − 1.61·117-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.270218370\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.270218370\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 79 | \( 1 + T \) |
| good | 3 | \( 1 - T^{2} \) |
| 5 | \( 1 - 0.618T + T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 - 1.61T + T^{2} \) |
| 13 | \( 1 + 1.61T + T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + 0.618T + T^{2} \) |
| 23 | \( 1 + 0.618T + T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - 1.61T + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + 0.618T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - 0.618T + T^{2} \) |
| 83 | \( 1 + 2T + T^{2} \) |
| 89 | \( 1 + 1.61T + T^{2} \) |
| 97 | \( 1 - 0.618T + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.829801807003953157478102487683, −9.325465599260351693255651923396, −8.294433615856057765424289976892, −7.25544407963965417200099046680, −6.65483324343715194501014118334, −5.80660239597333349970510981606, −4.60149991100736925799271846309, −4.01921444231014817335883723546, −2.51719698111865183022931018397, −1.48750417157765528420555652390,
1.48750417157765528420555652390, 2.51719698111865183022931018397, 4.01921444231014817335883723546, 4.60149991100736925799271846309, 5.80660239597333349970510981606, 6.65483324343715194501014118334, 7.25544407963965417200099046680, 8.294433615856057765424289976892, 9.325465599260351693255651923396, 9.829801807003953157478102487683