L(s) = 1 | + (4 + 6.92i)2-s + (−31.9 + 55.4i)4-s + (6.21 + 10.7i)5-s + (−879. − 223. i)7-s − 511.·8-s + (−49.7 + 86.1i)10-s + (−3.36e3 + 5.82e3i)11-s + 7.23e3·13-s + (−1.97e3 − 6.98e3i)14-s + (−2.04e3 − 3.54e3i)16-s + (7.66e3 − 1.32e4i)17-s + (−9.45e3 − 1.63e4i)19-s − 795.·20-s − 5.37e4·22-s + (−2.38e4 − 4.13e4i)23-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.0222 + 0.0385i)5-s + (−0.969 − 0.246i)7-s − 0.353·8-s + (−0.0157 + 0.0272i)10-s + (−0.761 + 1.31i)11-s + 0.912·13-s + (−0.192 − 0.680i)14-s + (−0.125 − 0.216i)16-s + (0.378 − 0.655i)17-s + (−0.316 − 0.547i)19-s − 0.0222·20-s − 1.07·22-s + (−0.408 − 0.708i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.670 + 0.741i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.670 + 0.741i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(1.186696445\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.186696445\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-4 - 6.92i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (879. + 223. i)T \) |
good | 5 | \( 1 + (-6.21 - 10.7i)T + (-3.90e4 + 6.76e4i)T^{2} \) |
| 11 | \( 1 + (3.36e3 - 5.82e3i)T + (-9.74e6 - 1.68e7i)T^{2} \) |
| 13 | \( 1 - 7.23e3T + 6.27e7T^{2} \) |
| 17 | \( 1 + (-7.66e3 + 1.32e4i)T + (-2.05e8 - 3.55e8i)T^{2} \) |
| 19 | \( 1 + (9.45e3 + 1.63e4i)T + (-4.46e8 + 7.74e8i)T^{2} \) |
| 23 | \( 1 + (2.38e4 + 4.13e4i)T + (-1.70e9 + 2.94e9i)T^{2} \) |
| 29 | \( 1 - 6.74e4T + 1.72e10T^{2} \) |
| 31 | \( 1 + (5.48e4 - 9.50e4i)T + (-1.37e10 - 2.38e10i)T^{2} \) |
| 37 | \( 1 + (3.04e5 + 5.27e5i)T + (-4.74e10 + 8.22e10i)T^{2} \) |
| 41 | \( 1 - 8.08e5T + 1.94e11T^{2} \) |
| 43 | \( 1 + 3.34e5T + 2.71e11T^{2} \) |
| 47 | \( 1 + (3.82e5 + 6.62e5i)T + (-2.53e11 + 4.38e11i)T^{2} \) |
| 53 | \( 1 + (-6.22e5 + 1.07e6i)T + (-5.87e11 - 1.01e12i)T^{2} \) |
| 59 | \( 1 + (-1.02e6 + 1.77e6i)T + (-1.24e12 - 2.15e12i)T^{2} \) |
| 61 | \( 1 + (7.04e4 + 1.22e5i)T + (-1.57e12 + 2.72e12i)T^{2} \) |
| 67 | \( 1 + (1.46e6 - 2.54e6i)T + (-3.03e12 - 5.24e12i)T^{2} \) |
| 71 | \( 1 - 6.15e5T + 9.09e12T^{2} \) |
| 73 | \( 1 + (-7.11e5 + 1.23e6i)T + (-5.52e12 - 9.56e12i)T^{2} \) |
| 79 | \( 1 + (-1.19e6 - 2.06e6i)T + (-9.60e12 + 1.66e13i)T^{2} \) |
| 83 | \( 1 - 7.53e6T + 2.71e13T^{2} \) |
| 89 | \( 1 + (2.67e6 + 4.63e6i)T + (-2.21e13 + 3.83e13i)T^{2} \) |
| 97 | \( 1 + 1.58e7T + 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.30665520652206147876362653969, −10.71342787997836072509877445621, −9.758395186201560120257430963016, −8.579144232023946942690905852111, −7.28313314102042112858361151718, −6.49295223040701401976594658871, −5.15923355520160377862754706903, −3.92258283357970668948444383882, −2.50663626104104335141945779327, −0.32789551687188016673700767168,
1.17863234279105396416378251299, 2.91090923151674030626595992115, 3.76698029037631391237237910718, 5.54522711731269340978223923840, 6.28588746930884417183695159703, 8.073049441851985282610288569864, 9.116918904163055335268624398201, 10.29304193510279593027703988216, 11.08352740811714192422778439265, 12.23565675591143381061381952356