Properties

Label 2-126-63.20-c1-0-3
Degree $2$
Conductor $126$
Sign $0.920 + 0.389i$
Analytic cond. $1.00611$
Root an. cond. $1.00305$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 − 0.5i)2-s + (1.40 − 1.00i)3-s + (0.499 + 0.866i)4-s + (1.17 + 2.03i)5-s + (−1.72 + 0.167i)6-s + (1.55 + 2.14i)7-s − 0.999i·8-s + (0.971 − 2.83i)9-s − 2.34i·10-s + (−4.91 − 2.83i)11-s + (1.57 + 0.716i)12-s + (1.48 − 0.859i)13-s + (−0.274 − 2.63i)14-s + (3.70 + 1.68i)15-s + (−0.5 + 0.866i)16-s − 1.76·17-s + ⋯
L(s)  = 1  + (−0.612 − 0.353i)2-s + (0.813 − 0.581i)3-s + (0.249 + 0.433i)4-s + (0.525 + 0.909i)5-s + (−0.703 + 0.0684i)6-s + (0.587 + 0.809i)7-s − 0.353i·8-s + (0.323 − 0.946i)9-s − 0.742i·10-s + (−1.48 − 0.855i)11-s + (0.455 + 0.206i)12-s + (0.413 − 0.238i)13-s + (−0.0734 − 0.703i)14-s + (0.956 + 0.434i)15-s + (−0.125 + 0.216i)16-s − 0.429·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.920 + 0.389i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.920 + 0.389i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(126\)    =    \(2 \cdot 3^{2} \cdot 7\)
Sign: $0.920 + 0.389i$
Analytic conductor: \(1.00611\)
Root analytic conductor: \(1.00305\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{126} (83, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 126,\ (\ :1/2),\ 0.920 + 0.389i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.07339 - 0.217753i\)
\(L(\frac12)\) \(\approx\) \(1.07339 - 0.217753i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.866 + 0.5i)T \)
3 \( 1 + (-1.40 + 1.00i)T \)
7 \( 1 + (-1.55 - 2.14i)T \)
good5 \( 1 + (-1.17 - 2.03i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (4.91 + 2.83i)T + (5.5 + 9.52i)T^{2} \)
13 \( 1 + (-1.48 + 0.859i)T + (6.5 - 11.2i)T^{2} \)
17 \( 1 + 1.76T + 17T^{2} \)
19 \( 1 + 1.13iT - 19T^{2} \)
23 \( 1 + (3.18 - 1.83i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 + (-3.59 - 2.07i)T + (14.5 + 25.1i)T^{2} \)
31 \( 1 + (7.24 - 4.18i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + 9.19T + 37T^{2} \)
41 \( 1 + (-3.99 - 6.92i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (-1.76 + 3.04i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (-5.90 + 10.2i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 - 53T^{2} \)
59 \( 1 + (-1.11 - 1.93i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-7.79 - 4.49i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (5.43 + 9.41i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 - 4.52iT - 71T^{2} \)
73 \( 1 - 5.34iT - 73T^{2} \)
79 \( 1 + (-6.51 + 11.2i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (6.27 - 10.8i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + 1.16T + 89T^{2} \)
97 \( 1 + (3.97 + 2.29i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.37496292343935508974513139432, −12.30396820210165310741647912286, −11.05476074277517467686799286340, −10.25666042658783873319550179503, −8.870708345713788175513406766526, −8.190765540728991514501774253710, −7.02853423073812430118387642148, −5.67284245472052153438313875235, −3.15397118716094393760097351803, −2.16239716326857282990629004804, 2.02334720066475203917533924689, 4.33951716167518099072124358596, 5.39075395417480500629673111882, 7.36326054661166374375068336064, 8.197795286751365793615021072735, 9.168290828958851554744548293397, 10.15661130643413673257206692093, 10.87154756812963536574011032038, 12.70692610987337814238799802399, 13.60540534512383623742067879026

Graph of the $Z$-function along the critical line