Properties

Label 2-126-1.1-c5-0-11
Degree $2$
Conductor $126$
Sign $-1$
Analytic cond. $20.2083$
Root an. cond. $4.49537$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 16·4-s − 26·5-s − 49·7-s + 64·8-s − 104·10-s − 664·11-s + 318·13-s − 196·14-s + 256·16-s − 1.58e3·17-s + 236·19-s − 416·20-s − 2.65e3·22-s − 2.21e3·23-s − 2.44e3·25-s + 1.27e3·26-s − 784·28-s + 4.95e3·29-s − 7.12e3·31-s + 1.02e3·32-s − 6.32e3·34-s + 1.27e3·35-s + 4.35e3·37-s + 944·38-s − 1.66e3·40-s − 1.05e4·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.465·5-s − 0.377·7-s + 0.353·8-s − 0.328·10-s − 1.65·11-s + 0.521·13-s − 0.267·14-s + 1/4·16-s − 1.32·17-s + 0.149·19-s − 0.232·20-s − 1.16·22-s − 0.871·23-s − 0.783·25-s + 0.369·26-s − 0.188·28-s + 1.09·29-s − 1.33·31-s + 0.176·32-s − 0.938·34-s + 0.175·35-s + 0.523·37-s + 0.106·38-s − 0.164·40-s − 0.979·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(126\)    =    \(2 \cdot 3^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(20.2083\)
Root analytic conductor: \(4.49537\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 126,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{2} T \)
3 \( 1 \)
7 \( 1 + p^{2} T \)
good5 \( 1 + 26 T + p^{5} T^{2} \)
11 \( 1 + 664 T + p^{5} T^{2} \)
13 \( 1 - 318 T + p^{5} T^{2} \)
17 \( 1 + 1582 T + p^{5} T^{2} \)
19 \( 1 - 236 T + p^{5} T^{2} \)
23 \( 1 + 2212 T + p^{5} T^{2} \)
29 \( 1 - 4954 T + p^{5} T^{2} \)
31 \( 1 + 7128 T + p^{5} T^{2} \)
37 \( 1 - 4358 T + p^{5} T^{2} \)
41 \( 1 + 10542 T + p^{5} T^{2} \)
43 \( 1 + 8452 T + p^{5} T^{2} \)
47 \( 1 + 5352 T + p^{5} T^{2} \)
53 \( 1 - 33354 T + p^{5} T^{2} \)
59 \( 1 - 15436 T + p^{5} T^{2} \)
61 \( 1 + 36762 T + p^{5} T^{2} \)
67 \( 1 - 40972 T + p^{5} T^{2} \)
71 \( 1 - 9092 T + p^{5} T^{2} \)
73 \( 1 + 73454 T + p^{5} T^{2} \)
79 \( 1 - 89400 T + p^{5} T^{2} \)
83 \( 1 - 6428 T + p^{5} T^{2} \)
89 \( 1 - 122658 T + p^{5} T^{2} \)
97 \( 1 - 21370 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.04022695383416727624633704007, −11.01801208592486658423154011514, −10.10718423441914842894614593599, −8.523281763303461303593618915159, −7.47466317843497847793844847019, −6.21555441545313718617996499970, −4.98936430784473611144674787749, −3.69516476894819029975161239788, −2.31485346858646908750879863284, 0, 2.31485346858646908750879863284, 3.69516476894819029975161239788, 4.98936430784473611144674787749, 6.21555441545313718617996499970, 7.47466317843497847793844847019, 8.523281763303461303593618915159, 10.10718423441914842894614593599, 11.01801208592486658423154011514, 12.04022695383416727624633704007

Graph of the $Z$-function along the critical line