Properties

Label 2-123840-1.1-c1-0-142
Degree $2$
Conductor $123840$
Sign $-1$
Analytic cond. $988.867$
Root an. cond. $31.4462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 6·13-s + 2·17-s + 2·19-s + 6·23-s + 25-s − 6·29-s − 4·31-s + 8·37-s + 8·41-s + 43-s + 6·47-s − 7·49-s − 6·53-s − 4·59-s + 14·61-s − 6·65-s − 4·67-s − 8·71-s − 4·73-s + 12·79-s + 2·83-s − 2·85-s − 14·89-s − 2·95-s − 2·97-s + 101-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.66·13-s + 0.485·17-s + 0.458·19-s + 1.25·23-s + 1/5·25-s − 1.11·29-s − 0.718·31-s + 1.31·37-s + 1.24·41-s + 0.152·43-s + 0.875·47-s − 49-s − 0.824·53-s − 0.520·59-s + 1.79·61-s − 0.744·65-s − 0.488·67-s − 0.949·71-s − 0.468·73-s + 1.35·79-s + 0.219·83-s − 0.216·85-s − 1.48·89-s − 0.205·95-s − 0.203·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 123840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(123840\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 43\)
Sign: $-1$
Analytic conductor: \(988.867\)
Root analytic conductor: \(31.4462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 123840,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
43 \( 1 - T \)
good7 \( 1 + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 - 12 T + p T^{2} \)
83 \( 1 - 2 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.74072588650227, −13.13243065596134, −12.91944272984906, −12.46336569859247, −11.64270184115048, −11.35267929106969, −10.94418168402327, −10.60158625287427, −9.799290744381303, −9.264525837210279, −8.996779637661287, −8.346053022617049, −7.824244017359317, −7.447811265639239, −6.860421420861217, −6.223331285747393, −5.775163572175530, −5.287138574983603, −4.592048426936206, −3.939976843185767, −3.582437634624126, −2.980997849354215, −2.325780706628375, −1.264944675662694, −1.090170352971485, 0, 1.090170352971485, 1.264944675662694, 2.325780706628375, 2.980997849354215, 3.582437634624126, 3.939976843185767, 4.592048426936206, 5.287138574983603, 5.775163572175530, 6.223331285747393, 6.860421420861217, 7.447811265639239, 7.824244017359317, 8.346053022617049, 8.996779637661287, 9.264525837210279, 9.799290744381303, 10.60158625287427, 10.94418168402327, 11.35267929106969, 11.64270184115048, 12.46336569859247, 12.91944272984906, 13.13243065596134, 13.74072588650227

Graph of the $Z$-function along the critical line