Properties

Label 2-123840-1.1-c1-0-116
Degree $2$
Conductor $123840$
Sign $-1$
Analytic cond. $988.867$
Root an. cond. $31.4462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s + 6·11-s − 2·13-s + 4·17-s − 6·19-s + 6·23-s + 25-s + 10·29-s + 2·35-s − 2·37-s + 6·41-s − 43-s + 6·47-s − 3·49-s + 2·53-s − 6·55-s − 14·59-s + 8·61-s + 2·65-s − 4·67-s − 12·73-s − 12·77-s − 4·83-s − 4·85-s + 10·89-s + 4·91-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.755·7-s + 1.80·11-s − 0.554·13-s + 0.970·17-s − 1.37·19-s + 1.25·23-s + 1/5·25-s + 1.85·29-s + 0.338·35-s − 0.328·37-s + 0.937·41-s − 0.152·43-s + 0.875·47-s − 3/7·49-s + 0.274·53-s − 0.809·55-s − 1.82·59-s + 1.02·61-s + 0.248·65-s − 0.488·67-s − 1.40·73-s − 1.36·77-s − 0.439·83-s − 0.433·85-s + 1.05·89-s + 0.419·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 123840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(123840\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 43\)
Sign: $-1$
Analytic conductor: \(988.867\)
Root analytic conductor: \(31.4462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 123840,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
43 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 10 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 14 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 12 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.94061824989619, −13.17781954846821, −12.69681059094297, −12.30144862067266, −11.94732840396867, −11.50156075085087, −10.79067159452029, −10.43527660837803, −9.848362370539752, −9.350407251752418, −8.876471108412412, −8.552879946026467, −7.821130690050638, −7.261439559944314, −6.742060785555522, −6.402815244559510, −5.936561011470316, −5.128975075961331, −4.472523649813684, −4.157151570275581, −3.451954324846227, −2.993063366381634, −2.368096441291533, −1.370152658663828, −0.9359741619059174, 0, 0.9359741619059174, 1.370152658663828, 2.368096441291533, 2.993063366381634, 3.451954324846227, 4.157151570275581, 4.472523649813684, 5.128975075961331, 5.936561011470316, 6.402815244559510, 6.742060785555522, 7.261439559944314, 7.821130690050638, 8.552879946026467, 8.876471108412412, 9.350407251752418, 9.848362370539752, 10.43527660837803, 10.79067159452029, 11.50156075085087, 11.94732840396867, 12.30144862067266, 12.69681059094297, 13.17781954846821, 13.94061824989619

Graph of the $Z$-function along the critical line