Properties

Label 2-123840-1.1-c1-0-103
Degree $2$
Conductor $123840$
Sign $-1$
Analytic cond. $988.867$
Root an. cond. $31.4462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 4·7-s − 2·13-s − 2·17-s + 4·19-s + 25-s − 6·29-s − 8·31-s − 4·35-s + 6·37-s − 10·41-s − 43-s + 9·49-s − 6·53-s − 2·61-s + 2·65-s + 12·67-s − 8·71-s − 2·73-s + 8·79-s + 4·83-s + 2·85-s + 6·89-s − 8·91-s − 4·95-s + 10·97-s + 101-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.51·7-s − 0.554·13-s − 0.485·17-s + 0.917·19-s + 1/5·25-s − 1.11·29-s − 1.43·31-s − 0.676·35-s + 0.986·37-s − 1.56·41-s − 0.152·43-s + 9/7·49-s − 0.824·53-s − 0.256·61-s + 0.248·65-s + 1.46·67-s − 0.949·71-s − 0.234·73-s + 0.900·79-s + 0.439·83-s + 0.216·85-s + 0.635·89-s − 0.838·91-s − 0.410·95-s + 1.01·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 123840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(123840\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 43\)
Sign: $-1$
Analytic conductor: \(988.867\)
Root analytic conductor: \(31.4462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 123840,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
43 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.84285547052407, −13.24445233960101, −12.87187716566815, −12.20517123194327, −11.72272951912537, −11.39498458461826, −11.03259548808990, −10.49387327728018, −9.918051820086505, −9.165945202970736, −9.050258990740353, −8.179909886093930, −7.881583531446211, −7.477750230073231, −6.965313117843807, −6.348892693617879, −5.452244387372004, −5.260724592223630, −4.685266490592944, −4.145755837495468, −3.541683742649451, −2.926771005350920, −1.998826924080932, −1.761436985073483, −0.8748066432862999, 0, 0.8748066432862999, 1.761436985073483, 1.998826924080932, 2.926771005350920, 3.541683742649451, 4.145755837495468, 4.685266490592944, 5.260724592223630, 5.452244387372004, 6.348892693617879, 6.965313117843807, 7.477750230073231, 7.881583531446211, 8.179909886093930, 9.050258990740353, 9.165945202970736, 9.918051820086505, 10.49387327728018, 11.03259548808990, 11.39498458461826, 11.72272951912537, 12.20517123194327, 12.87187716566815, 13.24445233960101, 13.84285547052407

Graph of the $Z$-function along the critical line