L(s) = 1 | + (0.207 − 0.358i)3-s + (1.70 + 2.95i)5-s + (2.62 − 0.358i)7-s + (1.41 + 2.44i)9-s + (0.5 − 0.866i)11-s + 1.82·13-s + 1.41·15-s + (3.82 − 6.63i)17-s + (−1.70 − 2.95i)19-s + (0.414 − 1.01i)21-s + (1.12 + 1.94i)23-s + (−3.32 + 5.76i)25-s + 2.41·27-s − 8.65·29-s + (−2 + 3.46i)31-s + ⋯ |
L(s) = 1 | + (0.119 − 0.207i)3-s + (0.763 + 1.32i)5-s + (0.990 − 0.135i)7-s + (0.471 + 0.816i)9-s + (0.150 − 0.261i)11-s + 0.507·13-s + 0.365·15-s + (0.928 − 1.60i)17-s + (−0.391 − 0.678i)19-s + (0.0903 − 0.221i)21-s + (0.233 + 0.404i)23-s + (−0.665 + 1.15i)25-s + 0.464·27-s − 1.60·29-s + (−0.359 + 0.622i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1232 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.827 - 0.561i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1232 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.827 - 0.561i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.376107887\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.376107887\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-2.62 + 0.358i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
good | 3 | \( 1 + (-0.207 + 0.358i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.70 - 2.95i)T + (-2.5 + 4.33i)T^{2} \) |
| 13 | \( 1 - 1.82T + 13T^{2} \) |
| 17 | \( 1 + (-3.82 + 6.63i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.70 + 2.95i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.12 - 1.94i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 8.65T + 29T^{2} \) |
| 31 | \( 1 + (2 - 3.46i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.29 - 5.70i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 2.58T + 41T^{2} \) |
| 43 | \( 1 + 5.65T + 43T^{2} \) |
| 47 | \( 1 + (-3.24 - 5.61i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.94 + 10.3i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (4.20 - 7.28i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.08 + 5.34i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.62 + 9.73i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 3.07T + 71T^{2} \) |
| 73 | \( 1 + (-3.29 + 5.70i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.37 + 4.11i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 16.1T + 83T^{2} \) |
| 89 | \( 1 + (-2.24 - 3.88i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 1.82T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.887158846617842178881359337986, −9.067677356937518852724875729093, −7.935134415795430969629338323096, −7.31928789493241657808952580672, −6.65912576543505764352879724812, −5.54039280383235118055395296516, −4.83677143227443591637514099787, −3.43582504747756555725779251957, −2.47584334545804387681865554557, −1.48669507545229224292878013407,
1.23187416074648973047204664094, 1.89662910988810988491518488172, 3.80502141466561097451213847574, 4.36505882253948151849299092970, 5.59671282808120311801566003721, 5.90082833782051260858773696020, 7.28452743964094573402695282383, 8.330809868366710708438986213658, 8.746323332983983580631913752874, 9.584039072585232145715305126255