Properties

Label 2-1232-1.1-c3-0-42
Degree $2$
Conductor $1232$
Sign $-1$
Analytic cond. $72.6903$
Root an. cond. $8.52586$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s − 12·5-s − 7·7-s − 11·9-s − 11·11-s − 10·13-s + 48·15-s + 24·17-s + 94·19-s + 28·21-s + 180·23-s + 19·25-s + 152·27-s + 30·29-s + 94·31-s + 44·33-s + 84·35-s − 214·37-s + 40·39-s − 48·41-s − 8·43-s + 132·45-s − 30·47-s + 49·49-s − 96·51-s + 54·53-s + 132·55-s + ⋯
L(s)  = 1  − 0.769·3-s − 1.07·5-s − 0.377·7-s − 0.407·9-s − 0.301·11-s − 0.213·13-s + 0.826·15-s + 0.342·17-s + 1.13·19-s + 0.290·21-s + 1.63·23-s + 0.151·25-s + 1.08·27-s + 0.192·29-s + 0.544·31-s + 0.232·33-s + 0.405·35-s − 0.950·37-s + 0.164·39-s − 0.182·41-s − 0.0283·43-s + 0.437·45-s − 0.0931·47-s + 1/7·49-s − 0.263·51-s + 0.139·53-s + 0.323·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1232 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1232 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1232\)    =    \(2^{4} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(72.6903\)
Root analytic conductor: \(8.52586\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1232,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + p T \)
11 \( 1 + p T \)
good3 \( 1 + 4 T + p^{3} T^{2} \)
5 \( 1 + 12 T + p^{3} T^{2} \)
13 \( 1 + 10 T + p^{3} T^{2} \)
17 \( 1 - 24 T + p^{3} T^{2} \)
19 \( 1 - 94 T + p^{3} T^{2} \)
23 \( 1 - 180 T + p^{3} T^{2} \)
29 \( 1 - 30 T + p^{3} T^{2} \)
31 \( 1 - 94 T + p^{3} T^{2} \)
37 \( 1 + 214 T + p^{3} T^{2} \)
41 \( 1 + 48 T + p^{3} T^{2} \)
43 \( 1 + 8 T + p^{3} T^{2} \)
47 \( 1 + 30 T + p^{3} T^{2} \)
53 \( 1 - 54 T + p^{3} T^{2} \)
59 \( 1 + 360 T + p^{3} T^{2} \)
61 \( 1 + 178 T + p^{3} T^{2} \)
67 \( 1 - 292 T + p^{3} T^{2} \)
71 \( 1 + 312 T + p^{3} T^{2} \)
73 \( 1 - 728 T + p^{3} T^{2} \)
79 \( 1 - 1288 T + p^{3} T^{2} \)
83 \( 1 + 66 T + p^{3} T^{2} \)
89 \( 1 + 390 T + p^{3} T^{2} \)
97 \( 1 + 1510 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.898810348001452132363573358716, −8.025109803198574670524518986577, −7.26362759973626609136523574409, −6.48710014771696171423284068442, −5.40987880033525637221541576690, −4.83484738138951930969294865884, −3.58281124304375225548880065042, −2.83264743735473825515831469058, −0.983273800092516277493884841171, 0, 0.983273800092516277493884841171, 2.83264743735473825515831469058, 3.58281124304375225548880065042, 4.83484738138951930969294865884, 5.40987880033525637221541576690, 6.48710014771696171423284068442, 7.26362759973626609136523574409, 8.025109803198574670524518986577, 8.898810348001452132363573358716

Graph of the $Z$-function along the critical line