Properties

Label 2-1232-1.1-c3-0-13
Degree $2$
Conductor $1232$
Sign $1$
Analytic cond. $72.6903$
Root an. cond. $8.52586$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.163·3-s − 5.36·5-s + 7·7-s − 26.9·9-s − 11·11-s − 42.9·13-s − 0.877·15-s − 60.8·17-s − 140.·19-s + 1.14·21-s + 91.3·23-s − 96.1·25-s − 8.81·27-s + 260.·29-s + 259.·31-s − 1.79·33-s − 37.5·35-s + 359.·37-s − 7.01·39-s − 320.·41-s + 92.3·43-s + 144.·45-s − 67.4·47-s + 49·49-s − 9.94·51-s − 246.·53-s + 59.0·55-s + ⋯
L(s)  = 1  + 0.0314·3-s − 0.480·5-s + 0.377·7-s − 0.999·9-s − 0.301·11-s − 0.916·13-s − 0.0150·15-s − 0.868·17-s − 1.69·19-s + 0.0118·21-s + 0.828·23-s − 0.769·25-s − 0.0628·27-s + 1.67·29-s + 1.50·31-s − 0.00948·33-s − 0.181·35-s + 1.59·37-s − 0.0288·39-s − 1.21·41-s + 0.327·43-s + 0.479·45-s − 0.209·47-s + 0.142·49-s − 0.0273·51-s − 0.637·53-s + 0.144·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1232 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1232 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1232\)    =    \(2^{4} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(72.6903\)
Root analytic conductor: \(8.52586\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1232,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.117539877\)
\(L(\frac12)\) \(\approx\) \(1.117539877\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - 7T \)
11 \( 1 + 11T \)
good3 \( 1 - 0.163T + 27T^{2} \)
5 \( 1 + 5.36T + 125T^{2} \)
13 \( 1 + 42.9T + 2.19e3T^{2} \)
17 \( 1 + 60.8T + 4.91e3T^{2} \)
19 \( 1 + 140.T + 6.85e3T^{2} \)
23 \( 1 - 91.3T + 1.21e4T^{2} \)
29 \( 1 - 260.T + 2.43e4T^{2} \)
31 \( 1 - 259.T + 2.97e4T^{2} \)
37 \( 1 - 359.T + 5.06e4T^{2} \)
41 \( 1 + 320.T + 6.89e4T^{2} \)
43 \( 1 - 92.3T + 7.95e4T^{2} \)
47 \( 1 + 67.4T + 1.03e5T^{2} \)
53 \( 1 + 246.T + 1.48e5T^{2} \)
59 \( 1 - 475.T + 2.05e5T^{2} \)
61 \( 1 + 799.T + 2.26e5T^{2} \)
67 \( 1 - 725.T + 3.00e5T^{2} \)
71 \( 1 + 544.T + 3.57e5T^{2} \)
73 \( 1 + 580.T + 3.89e5T^{2} \)
79 \( 1 - 402.T + 4.93e5T^{2} \)
83 \( 1 - 1.10e3T + 5.71e5T^{2} \)
89 \( 1 - 1.25e3T + 7.04e5T^{2} \)
97 \( 1 + 9.99e2T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.221085721195111039374415378102, −8.344406528040587115823427035801, −7.989177844510453463024121554777, −6.79049005049065676486821112400, −6.11325098309941533167303827453, −4.87111201137943504660084390387, −4.36862681366438678134819733004, −2.95668971419341524536170272093, −2.21277724232716814138879751755, −0.51053792493050557233320647549, 0.51053792493050557233320647549, 2.21277724232716814138879751755, 2.95668971419341524536170272093, 4.36862681366438678134819733004, 4.87111201137943504660084390387, 6.11325098309941533167303827453, 6.79049005049065676486821112400, 7.989177844510453463024121554777, 8.344406528040587115823427035801, 9.221085721195111039374415378102

Graph of the $Z$-function along the critical line