L(s) = 1 | + 2.64·3-s − 1.73i·7-s + 4.00·9-s − 3.46i·11-s − 4.58i·13-s + 3·17-s + (−2.64 − 3.46i)19-s − 4.58i·21-s + 5.19i·23-s − 5·25-s + 2.64·27-s − 4.58i·29-s + 5.29·31-s − 9.16i·33-s + 9.16i·37-s + ⋯ |
L(s) = 1 | + 1.52·3-s − 0.654i·7-s + 1.33·9-s − 1.04i·11-s − 1.27i·13-s + 0.727·17-s + (−0.606 − 0.794i)19-s − 0.999i·21-s + 1.08i·23-s − 25-s + 0.509·27-s − 0.850i·29-s + 0.950·31-s − 1.59i·33-s + 1.50i·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.606 + 0.794i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.606 + 0.794i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.719071980\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.719071980\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + (2.64 + 3.46i)T \) |
good | 3 | \( 1 - 2.64T + 3T^{2} \) |
| 5 | \( 1 + 5T^{2} \) |
| 7 | \( 1 + 1.73iT - 7T^{2} \) |
| 11 | \( 1 + 3.46iT - 11T^{2} \) |
| 13 | \( 1 + 4.58iT - 13T^{2} \) |
| 17 | \( 1 - 3T + 17T^{2} \) |
| 23 | \( 1 - 5.19iT - 23T^{2} \) |
| 29 | \( 1 + 4.58iT - 29T^{2} \) |
| 31 | \( 1 - 5.29T + 31T^{2} \) |
| 37 | \( 1 - 9.16iT - 37T^{2} \) |
| 41 | \( 1 - 9.16iT - 41T^{2} \) |
| 43 | \( 1 - 43T^{2} \) |
| 47 | \( 1 + 3.46iT - 47T^{2} \) |
| 53 | \( 1 - 4.58iT - 53T^{2} \) |
| 59 | \( 1 - 7.93T + 59T^{2} \) |
| 61 | \( 1 - 8T + 61T^{2} \) |
| 67 | \( 1 - 2.64T + 67T^{2} \) |
| 71 | \( 1 - 15.8T + 71T^{2} \) |
| 73 | \( 1 + 11T + 73T^{2} \) |
| 79 | \( 1 + 5.29T + 79T^{2} \) |
| 83 | \( 1 + 6.92iT - 83T^{2} \) |
| 89 | \( 1 - 18.3iT - 89T^{2} \) |
| 97 | \( 1 - 9.16iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.700086963599393867248117617565, −8.551147143636774919400130716577, −8.094935916779749550301057410074, −7.52615667480879562802527628363, −6.38102699494528626698854652711, −5.33899556398969600742191701030, −4.05305044843527508616730846062, −3.30717386131226925748647439109, −2.56343857070413168442949455301, −1.01191301252709051843371456805,
1.89671423949553437373992045806, 2.40196928220026559881875904314, 3.71348254690985208809493685977, 4.36818341390879373943825858462, 5.63848811164763486835835423818, 6.79531537039988908275275926686, 7.51195481040265438388358110732, 8.430780970831348136890523216815, 8.902190109779649140008674682521, 9.706541227280144623280818654583