Properties

Label 2-1216-19.7-c1-0-26
Degree $2$
Conductor $1216$
Sign $-0.0977 + 0.995i$
Analytic cond. $9.70980$
Root an. cond. $3.11605$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)3-s + (−0.5 − 0.866i)5-s + (1 − 1.73i)9-s + 4·11-s + (−0.5 + 0.866i)13-s + (−0.499 + 0.866i)15-s + (−1.5 − 2.59i)17-s + (4 + 1.73i)19-s + (−2.5 + 4.33i)23-s + (2 − 3.46i)25-s − 5·27-s + (3.5 − 6.06i)29-s + 4·31-s + (−2 − 3.46i)33-s − 10·37-s + ⋯
L(s)  = 1  + (−0.288 − 0.499i)3-s + (−0.223 − 0.387i)5-s + (0.333 − 0.577i)9-s + 1.20·11-s + (−0.138 + 0.240i)13-s + (−0.129 + 0.223i)15-s + (−0.363 − 0.630i)17-s + (0.917 + 0.397i)19-s + (−0.521 + 0.902i)23-s + (0.400 − 0.692i)25-s − 0.962·27-s + (0.649 − 1.12i)29-s + 0.718·31-s + (−0.348 − 0.603i)33-s − 1.64·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0977 + 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0977 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1216\)    =    \(2^{6} \cdot 19\)
Sign: $-0.0977 + 0.995i$
Analytic conductor: \(9.70980\)
Root analytic conductor: \(3.11605\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1216} (577, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1216,\ (\ :1/2),\ -0.0977 + 0.995i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.427836286\)
\(L(\frac12)\) \(\approx\) \(1.427836286\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + (-4 - 1.73i)T \)
good3 \( 1 + (0.5 + 0.866i)T + (-1.5 + 2.59i)T^{2} \)
5 \( 1 + (0.5 + 0.866i)T + (-2.5 + 4.33i)T^{2} \)
7 \( 1 + 7T^{2} \)
11 \( 1 - 4T + 11T^{2} \)
13 \( 1 + (0.5 - 0.866i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + (1.5 + 2.59i)T + (-8.5 + 14.7i)T^{2} \)
23 \( 1 + (2.5 - 4.33i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-3.5 + 6.06i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 + 10T + 37T^{2} \)
41 \( 1 + (-2.5 - 4.33i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (2.5 + 4.33i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-3.5 + 6.06i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (-5.5 + 9.52i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-1.5 - 2.59i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-5.5 + 9.52i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (1.5 - 2.59i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (5.5 + 9.52i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (7.5 + 12.9i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-6.5 - 11.2i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + (1.5 - 2.59i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-2.5 - 4.33i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.535410791987473980052116502366, −8.730656008192374881332195779733, −7.82648993991234874058193208123, −6.87775854573007508450641997933, −6.39919526618954127540283321712, −5.30244719325971240695223039780, −4.26937653309723728699824070656, −3.42643847339027405608035657755, −1.83657513146358670977229837723, −0.70474159750067721955262695646, 1.41569620587877553977564110850, 2.89103846145515756479984791114, 3.96214577637191392787099964113, 4.72791856684776711902182837348, 5.69132326049427070035321836526, 6.73413549737044777708227204023, 7.32789131671831894718956048886, 8.441077738281850344115536236223, 9.149145462644269915291853308443, 10.12974116851784177510739424791

Graph of the $Z$-function along the critical line