L(s) = 1 | + 5-s − 7-s + 9-s + 11-s − 17-s − 19-s + 2·23-s − 35-s + 43-s + 45-s − 47-s + 55-s + 61-s − 63-s − 73-s − 77-s + 81-s − 2·83-s − 85-s − 95-s + 99-s − 2·101-s + 2·115-s + 119-s + ⋯ |
L(s) = 1 | + 5-s − 7-s + 9-s + 11-s − 17-s − 19-s + 2·23-s − 35-s + 43-s + 45-s − 47-s + 55-s + 61-s − 63-s − 73-s − 77-s + 81-s − 2·83-s − 85-s − 95-s + 99-s − 2·101-s + 2·115-s + 119-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.240850096\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.240850096\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + T \) |
good | 3 | \( ( 1 - T )( 1 + T ) \) |
| 5 | \( 1 - T + T^{2} \) |
| 7 | \( 1 + T + T^{2} \) |
| 11 | \( 1 - T + T^{2} \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( 1 + T + T^{2} \) |
| 23 | \( ( 1 - T )^{2} \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( ( 1 - T )( 1 + T ) \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 + T + T^{2} \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( 1 - T + T^{2} \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( ( 1 + T )^{2} \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.743925553197831389853782382945, −9.312766806520324350449380745313, −8.577246503382308181212911404506, −7.07199785023897052651582584541, −6.68470538831733392691825038165, −5.94153595478288606476463090847, −4.74386377035284362674949760855, −3.85812125665234711937576948696, −2.63373583294376273584783891474, −1.46331533509913767217191803252,
1.46331533509913767217191803252, 2.63373583294376273584783891474, 3.85812125665234711937576948696, 4.74386377035284362674949760855, 5.94153595478288606476463090847, 6.68470538831733392691825038165, 7.07199785023897052651582584541, 8.577246503382308181212911404506, 9.312766806520324350449380745313, 9.743925553197831389853782382945