L(s) = 1 | + 1.31i·5-s + 2.27i·7-s + 3·9-s + 2.15·11-s + 0.274·17-s − 4.35·19-s + 4i·23-s + 3.27·25-s − 2.98·35-s − 7.40·43-s + 3.94i·45-s + 10.2i·47-s + 1.82·49-s + 2.82i·55-s + 15.1i·61-s + ⋯ |
L(s) = 1 | + 0.587i·5-s + 0.859i·7-s + 9-s + 0.648·11-s + 0.0666·17-s − 1.00·19-s + 0.834i·23-s + 0.654·25-s − 0.505·35-s − 1.12·43-s + 0.587i·45-s + 1.49i·47-s + 0.260·49-s + 0.380i·55-s + 1.94i·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.258 - 0.965i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.258 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.709066703\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.709066703\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + 4.35T \) |
good | 3 | \( 1 - 3T^{2} \) |
| 5 | \( 1 - 1.31iT - 5T^{2} \) |
| 7 | \( 1 - 2.27iT - 7T^{2} \) |
| 11 | \( 1 - 2.15T + 11T^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 17 | \( 1 - 0.274T + 17T^{2} \) |
| 23 | \( 1 - 4iT - 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 + 37T^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + 7.40T + 43T^{2} \) |
| 47 | \( 1 - 10.2iT - 47T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 - 59T^{2} \) |
| 61 | \( 1 - 15.1iT - 61T^{2} \) |
| 67 | \( 1 - 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 - 16.8T + 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + 8.71T + 83T^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.867232813448841311021774088648, −9.141081149691055205125468668619, −8.341145618220282151511746010395, −7.30251028723848541468153465015, −6.63120951833219185302824088883, −5.82479435740534593051797641339, −4.71582781314895692681393336797, −3.77620183315409154081257765831, −2.65904015033544259890180611304, −1.51094435064327148319910965400,
0.793777972022043025629662754543, 1.96041085499069111032198366682, 3.61235822360394227683251533727, 4.35457860316717343780127143069, 5.09014521127127939059030055556, 6.51509447052524739276851964597, 6.92067259333288725101590637426, 7.997745379862870448048105140353, 8.727775274015526350937035002192, 9.610829495689491885157007064433