L(s) = 1 | − 2i·3-s − 1.73i·5-s + i·7-s − 9-s + 5.19·11-s + 4·13-s − 3.46·15-s + 3·17-s + (1.73 + 4i)19-s + 2·21-s + 2.00·25-s − 4i·27-s + 6·29-s − 10.3·31-s − 10.3i·33-s + ⋯ |
L(s) = 1 | − 1.15i·3-s − 0.774i·5-s + 0.377i·7-s − 0.333·9-s + 1.56·11-s + 1.10·13-s − 0.894·15-s + 0.727·17-s + (0.397 + 0.917i)19-s + 0.436·21-s + 0.400·25-s − 0.769i·27-s + 1.11·29-s − 1.86·31-s − 1.80i·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.146 + 0.989i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.146 + 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.004714074\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.004714074\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + (-1.73 - 4i)T \) |
good | 3 | \( 1 + 2iT - 3T^{2} \) |
| 5 | \( 1 + 1.73iT - 5T^{2} \) |
| 7 | \( 1 - iT - 7T^{2} \) |
| 11 | \( 1 - 5.19T + 11T^{2} \) |
| 13 | \( 1 - 4T + 13T^{2} \) |
| 17 | \( 1 - 3T + 17T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 - 6T + 29T^{2} \) |
| 31 | \( 1 + 10.3T + 31T^{2} \) |
| 37 | \( 1 + 2T + 37T^{2} \) |
| 41 | \( 1 + 3.46iT - 41T^{2} \) |
| 43 | \( 1 + 5.19T + 43T^{2} \) |
| 47 | \( 1 - 9iT - 47T^{2} \) |
| 53 | \( 1 + 6T + 53T^{2} \) |
| 59 | \( 1 - 59T^{2} \) |
| 61 | \( 1 + 1.73iT - 61T^{2} \) |
| 67 | \( 1 + 2iT - 67T^{2} \) |
| 71 | \( 1 + 6.92T + 71T^{2} \) |
| 73 | \( 1 + 11T + 73T^{2} \) |
| 79 | \( 1 + 3.46T + 79T^{2} \) |
| 83 | \( 1 + 3.46T + 83T^{2} \) |
| 89 | \( 1 - 3.46iT - 89T^{2} \) |
| 97 | \( 1 + 13.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.245683521547658268288999368990, −8.722698568724154353646717962981, −7.932078467666181946483948772795, −7.04662657994024753516024805834, −6.24415098127566892862887630842, −5.57804828508678475203475401770, −4.29152722655187238719740439526, −3.32351565617078422486380381689, −1.64470188708365613517861056945, −1.14145275964948875984146320967,
1.34973367956283087424626317560, 3.18388995059805578943054428431, 3.73093099926058045251888252420, 4.58067596317813162544530753290, 5.66762329119144006741507770395, 6.69127609520359241104221571575, 7.22910173381065667945289459892, 8.615001603846070718651373667256, 9.167983310786597686778772271456, 9.997294797428401400488169751927