Properties

Label 2-1216-152.117-c0-0-0
Degree $2$
Conductor $1216$
Sign $-0.258 + 0.966i$
Analytic cond. $0.606863$
Root an. cond. $0.779014$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.20 + 0.439i)3-s + (0.500 − 0.419i)9-s + (−1.62 − 0.939i)11-s + (−0.766 − 0.642i)17-s + (0.984 − 0.173i)19-s + (−0.939 − 0.342i)25-s + (0.223 − 0.386i)27-s + (2.37 + 0.419i)33-s + (−0.673 − 1.85i)41-s + (−0.984 − 0.173i)43-s + (0.5 − 0.866i)49-s + (1.20 + 0.439i)51-s + (−1.11 + 0.642i)57-s + (−0.524 − 0.439i)59-s + (1.50 − 1.26i)67-s + ⋯
L(s)  = 1  + (−1.20 + 0.439i)3-s + (0.500 − 0.419i)9-s + (−1.62 − 0.939i)11-s + (−0.766 − 0.642i)17-s + (0.984 − 0.173i)19-s + (−0.939 − 0.342i)25-s + (0.223 − 0.386i)27-s + (2.37 + 0.419i)33-s + (−0.673 − 1.85i)41-s + (−0.984 − 0.173i)43-s + (0.5 − 0.866i)49-s + (1.20 + 0.439i)51-s + (−1.11 + 0.642i)57-s + (−0.524 − 0.439i)59-s + (1.50 − 1.26i)67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.258 + 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.258 + 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1216\)    =    \(2^{6} \cdot 19\)
Sign: $-0.258 + 0.966i$
Analytic conductor: \(0.606863\)
Root analytic conductor: \(0.779014\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1216} (801, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1216,\ (\ :0),\ -0.258 + 0.966i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3212238297\)
\(L(\frac12)\) \(\approx\) \(0.3212238297\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + (-0.984 + 0.173i)T \)
good3 \( 1 + (1.20 - 0.439i)T + (0.766 - 0.642i)T^{2} \)
5 \( 1 + (0.939 + 0.342i)T^{2} \)
7 \( 1 + (-0.5 + 0.866i)T^{2} \)
11 \( 1 + (1.62 + 0.939i)T + (0.5 + 0.866i)T^{2} \)
13 \( 1 + (0.766 + 0.642i)T^{2} \)
17 \( 1 + (0.766 + 0.642i)T + (0.173 + 0.984i)T^{2} \)
23 \( 1 + (-0.939 + 0.342i)T^{2} \)
29 \( 1 + (0.173 - 0.984i)T^{2} \)
31 \( 1 + (0.5 - 0.866i)T^{2} \)
37 \( 1 + T^{2} \)
41 \( 1 + (0.673 + 1.85i)T + (-0.766 + 0.642i)T^{2} \)
43 \( 1 + (0.984 + 0.173i)T + (0.939 + 0.342i)T^{2} \)
47 \( 1 + (0.173 - 0.984i)T^{2} \)
53 \( 1 + (-0.939 + 0.342i)T^{2} \)
59 \( 1 + (0.524 + 0.439i)T + (0.173 + 0.984i)T^{2} \)
61 \( 1 + (0.939 - 0.342i)T^{2} \)
67 \( 1 + (-1.50 + 1.26i)T + (0.173 - 0.984i)T^{2} \)
71 \( 1 + (0.939 + 0.342i)T^{2} \)
73 \( 1 + (1.76 - 0.642i)T + (0.766 - 0.642i)T^{2} \)
79 \( 1 + (-0.766 + 0.642i)T^{2} \)
83 \( 1 + (0.300 - 0.173i)T + (0.5 - 0.866i)T^{2} \)
89 \( 1 + (-0.592 + 1.62i)T + (-0.766 - 0.642i)T^{2} \)
97 \( 1 + (1.26 - 1.50i)T + (-0.173 - 0.984i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.03774073401076988068217335169, −8.913319659444259128385064512110, −8.041187890251214886720557221934, −7.14483368964611273997087926743, −6.11980299571529869837845191298, −5.34111807243965903564368044957, −4.92489450380193893050834668700, −3.60077786151607904759877640580, −2.41509851765868934369956338044, −0.31488439567298742981317308735, 1.62152191060400622263789908734, 2.92694624277638073619558766126, 4.42894924971301466080474414033, 5.24761303976341749499547034582, 5.89679754881924424947102108435, 6.84013551877478630278207164182, 7.56937593852444007676953475288, 8.337221969868430971957134398823, 9.622765967985312224275333531184, 10.24661381025086247158080376323

Graph of the $Z$-function along the critical line