Properties

Label 2-1216-1.1-c3-0-97
Degree $2$
Conductor $1216$
Sign $-1$
Analytic cond. $71.7463$
Root an. cond. $8.47032$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.88·3-s − 4.69·5-s − 3.62·7-s + 20.4·9-s + 43.4·11-s − 75.0·13-s − 32.3·15-s − 13.1·17-s − 19·19-s − 24.9·21-s + 96.5·23-s − 102.·25-s − 45.3·27-s − 40.5·29-s − 138.·31-s + 299.·33-s + 17.0·35-s − 348.·37-s − 516.·39-s − 44.3·41-s + 214.·43-s − 95.7·45-s + 334.·47-s − 329.·49-s − 90.5·51-s − 311.·53-s − 204.·55-s + ⋯
L(s)  = 1  + 1.32·3-s − 0.419·5-s − 0.195·7-s + 0.755·9-s + 1.19·11-s − 1.60·13-s − 0.556·15-s − 0.187·17-s − 0.229·19-s − 0.259·21-s + 0.875·23-s − 0.823·25-s − 0.323·27-s − 0.259·29-s − 0.804·31-s + 1.57·33-s + 0.0822·35-s − 1.54·37-s − 2.12·39-s − 0.168·41-s + 0.760·43-s − 0.317·45-s + 1.03·47-s − 0.961·49-s − 0.248·51-s − 0.806·53-s − 0.500·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1216\)    =    \(2^{6} \cdot 19\)
Sign: $-1$
Analytic conductor: \(71.7463\)
Root analytic conductor: \(8.47032\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1216,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + 19T \)
good3 \( 1 - 6.88T + 27T^{2} \)
5 \( 1 + 4.69T + 125T^{2} \)
7 \( 1 + 3.62T + 343T^{2} \)
11 \( 1 - 43.4T + 1.33e3T^{2} \)
13 \( 1 + 75.0T + 2.19e3T^{2} \)
17 \( 1 + 13.1T + 4.91e3T^{2} \)
23 \( 1 - 96.5T + 1.21e4T^{2} \)
29 \( 1 + 40.5T + 2.43e4T^{2} \)
31 \( 1 + 138.T + 2.97e4T^{2} \)
37 \( 1 + 348.T + 5.06e4T^{2} \)
41 \( 1 + 44.3T + 6.89e4T^{2} \)
43 \( 1 - 214.T + 7.95e4T^{2} \)
47 \( 1 - 334.T + 1.03e5T^{2} \)
53 \( 1 + 311.T + 1.48e5T^{2} \)
59 \( 1 - 502.T + 2.05e5T^{2} \)
61 \( 1 - 54.7T + 2.26e5T^{2} \)
67 \( 1 - 312.T + 3.00e5T^{2} \)
71 \( 1 + 642.T + 3.57e5T^{2} \)
73 \( 1 + 837.T + 3.89e5T^{2} \)
79 \( 1 + 349.T + 4.93e5T^{2} \)
83 \( 1 - 521.T + 5.71e5T^{2} \)
89 \( 1 - 63.4T + 7.04e5T^{2} \)
97 \( 1 + 1.22e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.098812106670112032438731153452, −8.184145668061673691158060216006, −7.36063219170986540249734023824, −6.82113161272587073328003912356, −5.47690878782251250071144128352, −4.32488119302961633864435120186, −3.58592051610840196378490488391, −2.66153050186656783266588218835, −1.68644125203223151622341295690, 0, 1.68644125203223151622341295690, 2.66153050186656783266588218835, 3.58592051610840196378490488391, 4.32488119302961633864435120186, 5.47690878782251250071144128352, 6.82113161272587073328003912356, 7.36063219170986540249734023824, 8.184145668061673691158060216006, 9.098812106670112032438731153452

Graph of the $Z$-function along the critical line