Properties

Label 2-1216-1.1-c3-0-89
Degree $2$
Conductor $1216$
Sign $-1$
Analytic cond. $71.7463$
Root an. cond. $8.47032$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.54·3-s − 13.1·5-s − 19.9·7-s + 45.9·9-s − 25.7·11-s + 81.5·13-s − 112.·15-s + 115.·17-s − 19·19-s − 170.·21-s − 167.·23-s + 48.1·25-s + 161.·27-s − 251.·29-s + 189.·31-s − 220.·33-s + 262.·35-s − 88.3·37-s + 696.·39-s − 125.·41-s − 459.·43-s − 604.·45-s − 509.·47-s + 55.6·49-s + 986.·51-s + 604.·53-s + 339.·55-s + ⋯
L(s)  = 1  + 1.64·3-s − 1.17·5-s − 1.07·7-s + 1.70·9-s − 0.707·11-s + 1.73·13-s − 1.93·15-s + 1.64·17-s − 0.229·19-s − 1.77·21-s − 1.51·23-s + 0.385·25-s + 1.15·27-s − 1.61·29-s + 1.09·31-s − 1.16·33-s + 1.26·35-s − 0.392·37-s + 2.85·39-s − 0.479·41-s − 1.62·43-s − 2.00·45-s − 1.58·47-s + 0.162·49-s + 2.70·51-s + 1.56·53-s + 0.832·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1216\)    =    \(2^{6} \cdot 19\)
Sign: $-1$
Analytic conductor: \(71.7463\)
Root analytic conductor: \(8.47032\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1216,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + 19T \)
good3 \( 1 - 8.54T + 27T^{2} \)
5 \( 1 + 13.1T + 125T^{2} \)
7 \( 1 + 19.9T + 343T^{2} \)
11 \( 1 + 25.7T + 1.33e3T^{2} \)
13 \( 1 - 81.5T + 2.19e3T^{2} \)
17 \( 1 - 115.T + 4.91e3T^{2} \)
23 \( 1 + 167.T + 1.21e4T^{2} \)
29 \( 1 + 251.T + 2.43e4T^{2} \)
31 \( 1 - 189.T + 2.97e4T^{2} \)
37 \( 1 + 88.3T + 5.06e4T^{2} \)
41 \( 1 + 125.T + 6.89e4T^{2} \)
43 \( 1 + 459.T + 7.95e4T^{2} \)
47 \( 1 + 509.T + 1.03e5T^{2} \)
53 \( 1 - 604.T + 1.48e5T^{2} \)
59 \( 1 + 173.T + 2.05e5T^{2} \)
61 \( 1 - 271.T + 2.26e5T^{2} \)
67 \( 1 - 397.T + 3.00e5T^{2} \)
71 \( 1 + 762.T + 3.57e5T^{2} \)
73 \( 1 - 108.T + 3.89e5T^{2} \)
79 \( 1 + 230.T + 4.93e5T^{2} \)
83 \( 1 + 412.T + 5.71e5T^{2} \)
89 \( 1 + 1.27e3T + 7.04e5T^{2} \)
97 \( 1 + 1.33e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.651246757448325320751602265334, −8.175894187858316777294401937200, −7.69067621198875833580646061592, −6.68140687988901054002520825349, −5.61763693097654337363625155292, −3.98844575218101081940878940184, −3.58628649057336736843301034191, −2.97234811028860268322591843453, −1.57385132986058283642785428430, 0, 1.57385132986058283642785428430, 2.97234811028860268322591843453, 3.58628649057336736843301034191, 3.98844575218101081940878940184, 5.61763693097654337363625155292, 6.68140687988901054002520825349, 7.69067621198875833580646061592, 8.175894187858316777294401937200, 8.651246757448325320751602265334

Graph of the $Z$-function along the critical line