Properties

Label 2-1216-1.1-c3-0-61
Degree $2$
Conductor $1216$
Sign $1$
Analytic cond. $71.7463$
Root an. cond. $8.47032$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 21.2·5-s + 31.6·7-s − 26·9-s − 0.712·11-s + 38.9·13-s + 21.2·15-s − 54.1·17-s − 19·19-s + 31.6·21-s − 61.7·23-s + 328.·25-s − 53·27-s + 225.·29-s + 131.·31-s − 0.712·33-s + 673.·35-s − 94.1·37-s + 38.9·39-s − 108.·41-s + 205.·43-s − 553.·45-s + 523.·47-s + 658.·49-s − 54.1·51-s − 560.·53-s − 15.1·55-s + ⋯
L(s)  = 1  + 0.192·3-s + 1.90·5-s + 1.70·7-s − 0.962·9-s − 0.0195·11-s + 0.830·13-s + 0.366·15-s − 0.772·17-s − 0.229·19-s + 0.328·21-s − 0.560·23-s + 2.62·25-s − 0.377·27-s + 1.44·29-s + 0.762·31-s − 0.00375·33-s + 3.25·35-s − 0.418·37-s + 0.159·39-s − 0.414·41-s + 0.728·43-s − 1.83·45-s + 1.62·47-s + 1.91·49-s − 0.148·51-s − 1.45·53-s − 0.0371·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1216\)    =    \(2^{6} \cdot 19\)
Sign: $1$
Analytic conductor: \(71.7463\)
Root analytic conductor: \(8.47032\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1216,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.176469563\)
\(L(\frac12)\) \(\approx\) \(4.176469563\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + 19T \)
good3 \( 1 - T + 27T^{2} \)
5 \( 1 - 21.2T + 125T^{2} \)
7 \( 1 - 31.6T + 343T^{2} \)
11 \( 1 + 0.712T + 1.33e3T^{2} \)
13 \( 1 - 38.9T + 2.19e3T^{2} \)
17 \( 1 + 54.1T + 4.91e3T^{2} \)
23 \( 1 + 61.7T + 1.21e4T^{2} \)
29 \( 1 - 225.T + 2.43e4T^{2} \)
31 \( 1 - 131.T + 2.97e4T^{2} \)
37 \( 1 + 94.1T + 5.06e4T^{2} \)
41 \( 1 + 108.T + 6.89e4T^{2} \)
43 \( 1 - 205.T + 7.95e4T^{2} \)
47 \( 1 - 523.T + 1.03e5T^{2} \)
53 \( 1 + 560.T + 1.48e5T^{2} \)
59 \( 1 - 498.T + 2.05e5T^{2} \)
61 \( 1 + 179.T + 2.26e5T^{2} \)
67 \( 1 + 985.T + 3.00e5T^{2} \)
71 \( 1 - 904.T + 3.57e5T^{2} \)
73 \( 1 + 724.T + 3.89e5T^{2} \)
79 \( 1 - 1.16e3T + 4.93e5T^{2} \)
83 \( 1 + 1.13e3T + 5.71e5T^{2} \)
89 \( 1 - 208.T + 7.04e5T^{2} \)
97 \( 1 + 683.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.143643637990003596728039989914, −8.658213100207168847929668342520, −7.997076187135639665498129466273, −6.63558425043175627857333775693, −5.92868618536553408998649041449, −5.23630052727194331490437794878, −4.39091155672215984628548418318, −2.74552881288828589826461210494, −2.01527396157207334617864057038, −1.13767762486003359729916879992, 1.13767762486003359729916879992, 2.01527396157207334617864057038, 2.74552881288828589826461210494, 4.39091155672215984628548418318, 5.23630052727194331490437794878, 5.92868618536553408998649041449, 6.63558425043175627857333775693, 7.997076187135639665498129466273, 8.658213100207168847929668342520, 9.143643637990003596728039989914

Graph of the $Z$-function along the critical line