Properties

Label 2-1216-1.1-c3-0-55
Degree $2$
Conductor $1216$
Sign $-1$
Analytic cond. $71.7463$
Root an. cond. $8.47032$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.37·3-s − 11.8·5-s + 26.4·7-s + 1.86·9-s − 49.8·11-s + 49.0·13-s + 63.7·15-s + 17.2·17-s − 19·19-s − 142.·21-s − 166.·23-s + 15.6·25-s + 135.·27-s + 109.·29-s + 273.·31-s + 267.·33-s − 314.·35-s − 167.·37-s − 263.·39-s + 15.1·41-s + 413.·43-s − 22.0·45-s + 161.·47-s + 358.·49-s − 92.5·51-s + 490.·53-s + 591.·55-s + ⋯
L(s)  = 1  − 1.03·3-s − 1.06·5-s + 1.43·7-s + 0.0689·9-s − 1.36·11-s + 1.04·13-s + 1.09·15-s + 0.245·17-s − 0.229·19-s − 1.47·21-s − 1.51·23-s + 0.125·25-s + 0.962·27-s + 0.699·29-s + 1.58·31-s + 1.41·33-s − 1.51·35-s − 0.742·37-s − 1.08·39-s + 0.0577·41-s + 1.46·43-s − 0.0731·45-s + 0.501·47-s + 1.04·49-s − 0.254·51-s + 1.27·53-s + 1.44·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1216\)    =    \(2^{6} \cdot 19\)
Sign: $-1$
Analytic conductor: \(71.7463\)
Root analytic conductor: \(8.47032\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1216,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + 19T \)
good3 \( 1 + 5.37T + 27T^{2} \)
5 \( 1 + 11.8T + 125T^{2} \)
7 \( 1 - 26.4T + 343T^{2} \)
11 \( 1 + 49.8T + 1.33e3T^{2} \)
13 \( 1 - 49.0T + 2.19e3T^{2} \)
17 \( 1 - 17.2T + 4.91e3T^{2} \)
23 \( 1 + 166.T + 1.21e4T^{2} \)
29 \( 1 - 109.T + 2.43e4T^{2} \)
31 \( 1 - 273.T + 2.97e4T^{2} \)
37 \( 1 + 167.T + 5.06e4T^{2} \)
41 \( 1 - 15.1T + 6.89e4T^{2} \)
43 \( 1 - 413.T + 7.95e4T^{2} \)
47 \( 1 - 161.T + 1.03e5T^{2} \)
53 \( 1 - 490.T + 1.48e5T^{2} \)
59 \( 1 + 335.T + 2.05e5T^{2} \)
61 \( 1 + 725.T + 2.26e5T^{2} \)
67 \( 1 - 497.T + 3.00e5T^{2} \)
71 \( 1 - 798.T + 3.57e5T^{2} \)
73 \( 1 + 311.T + 3.89e5T^{2} \)
79 \( 1 - 665.T + 4.93e5T^{2} \)
83 \( 1 + 372.T + 5.71e5T^{2} \)
89 \( 1 + 673.T + 7.04e5T^{2} \)
97 \( 1 + 960.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.509709102810924684702088452231, −8.158163011625687449257356833488, −7.50390804945420585177821731749, −6.26020257736497502214071741744, −5.50771345691728118716779625739, −4.71329461459773408940567503127, −3.95619542069182722002231512217, −2.53370931477470693213653530024, −1.08335597844511349240491141856, 0, 1.08335597844511349240491141856, 2.53370931477470693213653530024, 3.95619542069182722002231512217, 4.71329461459773408940567503127, 5.50771345691728118716779625739, 6.26020257736497502214071741744, 7.50390804945420585177821731749, 8.158163011625687449257356833488, 8.509709102810924684702088452231

Graph of the $Z$-function along the critical line