L(s) = 1 | − 5.37·3-s − 11.8·5-s + 26.4·7-s + 1.86·9-s − 49.8·11-s + 49.0·13-s + 63.7·15-s + 17.2·17-s − 19·19-s − 142.·21-s − 166.·23-s + 15.6·25-s + 135.·27-s + 109.·29-s + 273.·31-s + 267.·33-s − 314.·35-s − 167.·37-s − 263.·39-s + 15.1·41-s + 413.·43-s − 22.0·45-s + 161.·47-s + 358.·49-s − 92.5·51-s + 490.·53-s + 591.·55-s + ⋯ |
L(s) = 1 | − 1.03·3-s − 1.06·5-s + 1.43·7-s + 0.0689·9-s − 1.36·11-s + 1.04·13-s + 1.09·15-s + 0.245·17-s − 0.229·19-s − 1.47·21-s − 1.51·23-s + 0.125·25-s + 0.962·27-s + 0.699·29-s + 1.58·31-s + 1.41·33-s − 1.51·35-s − 0.742·37-s − 1.08·39-s + 0.0577·41-s + 1.46·43-s − 0.0731·45-s + 0.501·47-s + 1.04·49-s − 0.254·51-s + 1.27·53-s + 1.44·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + 19T \) |
good | 3 | \( 1 + 5.37T + 27T^{2} \) |
| 5 | \( 1 + 11.8T + 125T^{2} \) |
| 7 | \( 1 - 26.4T + 343T^{2} \) |
| 11 | \( 1 + 49.8T + 1.33e3T^{2} \) |
| 13 | \( 1 - 49.0T + 2.19e3T^{2} \) |
| 17 | \( 1 - 17.2T + 4.91e3T^{2} \) |
| 23 | \( 1 + 166.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 109.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 273.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 167.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 15.1T + 6.89e4T^{2} \) |
| 43 | \( 1 - 413.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 161.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 490.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 335.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 725.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 497.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 798.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 311.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 665.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 372.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 673.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 960.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.509709102810924684702088452231, −8.158163011625687449257356833488, −7.50390804945420585177821731749, −6.26020257736497502214071741744, −5.50771345691728118716779625739, −4.71329461459773408940567503127, −3.95619542069182722002231512217, −2.53370931477470693213653530024, −1.08335597844511349240491141856, 0,
1.08335597844511349240491141856, 2.53370931477470693213653530024, 3.95619542069182722002231512217, 4.71329461459773408940567503127, 5.50771345691728118716779625739, 6.26020257736497502214071741744, 7.50390804945420585177821731749, 8.158163011625687449257356833488, 8.509709102810924684702088452231