L(s) = 1 | − 1.33·3-s − 18.4·5-s + 10.3·7-s − 25.2·9-s − 50.4·11-s + 61.8·13-s + 24.5·15-s + 68.1·17-s + 19·19-s − 13.8·21-s + 145.·23-s + 215.·25-s + 69.5·27-s − 42.6·29-s + 91.6·31-s + 67.1·33-s − 191.·35-s + 400.·37-s − 82.3·39-s − 123.·41-s − 449.·43-s + 465.·45-s − 453.·47-s − 235.·49-s − 90.7·51-s − 437.·53-s + 930.·55-s + ⋯ |
L(s) = 1 | − 0.256·3-s − 1.64·5-s + 0.560·7-s − 0.934·9-s − 1.38·11-s + 1.31·13-s + 0.422·15-s + 0.971·17-s + 0.229·19-s − 0.143·21-s + 1.32·23-s + 1.72·25-s + 0.495·27-s − 0.272·29-s + 0.531·31-s + 0.354·33-s − 0.925·35-s + 1.78·37-s − 0.338·39-s − 0.469·41-s − 1.59·43-s + 1.54·45-s − 1.40·47-s − 0.685·49-s − 0.249·51-s − 1.13·53-s + 2.28·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 - 19T \) |
good | 3 | \( 1 + 1.33T + 27T^{2} \) |
| 5 | \( 1 + 18.4T + 125T^{2} \) |
| 7 | \( 1 - 10.3T + 343T^{2} \) |
| 11 | \( 1 + 50.4T + 1.33e3T^{2} \) |
| 13 | \( 1 - 61.8T + 2.19e3T^{2} \) |
| 17 | \( 1 - 68.1T + 4.91e3T^{2} \) |
| 23 | \( 1 - 145.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 42.6T + 2.43e4T^{2} \) |
| 31 | \( 1 - 91.6T + 2.97e4T^{2} \) |
| 37 | \( 1 - 400.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 123.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 449.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 453.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 437.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 159.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 476.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 629.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 471.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 725.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 1.05e3T + 4.93e5T^{2} \) |
| 83 | \( 1 - 726.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 468.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 891.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.453407752444128035141525862345, −8.239012119690227007848983960848, −7.56886769887351108433817138122, −6.48013495713356578721358211578, −5.36499607098803742166698835001, −4.75337085865042495352861238966, −3.52751238869622494288749441864, −2.91864139660091334910920322923, −1.07888221655774043241416818902, 0,
1.07888221655774043241416818902, 2.91864139660091334910920322923, 3.52751238869622494288749441864, 4.75337085865042495352861238966, 5.36499607098803742166698835001, 6.48013495713356578721358211578, 7.56886769887351108433817138122, 8.239012119690227007848983960848, 8.453407752444128035141525862345