Properties

Label 2-1216-1.1-c3-0-45
Degree $2$
Conductor $1216$
Sign $-1$
Analytic cond. $71.7463$
Root an. cond. $8.47032$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.20·3-s − 7.79·5-s − 26.8·7-s + 0.114·9-s + 40.7·11-s − 24.2·13-s + 40.6·15-s + 70.2·17-s − 19·19-s + 139.·21-s − 37.2·23-s − 64.1·25-s + 139.·27-s + 171.·29-s − 64.4·31-s − 212.·33-s + 209.·35-s + 432.·37-s + 126.·39-s + 270.·41-s + 49.8·43-s − 0.889·45-s − 362.·47-s + 378.·49-s − 365.·51-s + 515.·53-s − 318.·55-s + ⋯
L(s)  = 1  − 1.00·3-s − 0.697·5-s − 1.45·7-s + 0.00422·9-s + 1.11·11-s − 0.516·13-s + 0.699·15-s + 1.00·17-s − 0.229·19-s + 1.45·21-s − 0.338·23-s − 0.513·25-s + 0.997·27-s + 1.10·29-s − 0.373·31-s − 1.12·33-s + 1.01·35-s + 1.92·37-s + 0.517·39-s + 1.02·41-s + 0.176·43-s − 0.00294·45-s − 1.12·47-s + 1.10·49-s − 1.00·51-s + 1.33·53-s − 0.779·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1216\)    =    \(2^{6} \cdot 19\)
Sign: $-1$
Analytic conductor: \(71.7463\)
Root analytic conductor: \(8.47032\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1216,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + 19T \)
good3 \( 1 + 5.20T + 27T^{2} \)
5 \( 1 + 7.79T + 125T^{2} \)
7 \( 1 + 26.8T + 343T^{2} \)
11 \( 1 - 40.7T + 1.33e3T^{2} \)
13 \( 1 + 24.2T + 2.19e3T^{2} \)
17 \( 1 - 70.2T + 4.91e3T^{2} \)
23 \( 1 + 37.2T + 1.21e4T^{2} \)
29 \( 1 - 171.T + 2.43e4T^{2} \)
31 \( 1 + 64.4T + 2.97e4T^{2} \)
37 \( 1 - 432.T + 5.06e4T^{2} \)
41 \( 1 - 270.T + 6.89e4T^{2} \)
43 \( 1 - 49.8T + 7.95e4T^{2} \)
47 \( 1 + 362.T + 1.03e5T^{2} \)
53 \( 1 - 515.T + 1.48e5T^{2} \)
59 \( 1 - 71.0T + 2.05e5T^{2} \)
61 \( 1 + 735.T + 2.26e5T^{2} \)
67 \( 1 + 224.T + 3.00e5T^{2} \)
71 \( 1 + 67.6T + 3.57e5T^{2} \)
73 \( 1 + 89.3T + 3.89e5T^{2} \)
79 \( 1 + 1.21e3T + 4.93e5T^{2} \)
83 \( 1 - 948.T + 5.71e5T^{2} \)
89 \( 1 - 877.T + 7.04e5T^{2} \)
97 \( 1 - 812.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.149268852364937293395137479901, −8.023493134001563185432457015769, −7.13197902199078744793878474344, −6.26355891509072509362289536599, −5.87270972400275316115610754880, −4.59451366816138285410672800731, −3.73076976434911949525285455639, −2.78165546221717077567367606963, −0.943063441194719526102828620618, 0, 0.943063441194719526102828620618, 2.78165546221717077567367606963, 3.73076976434911949525285455639, 4.59451366816138285410672800731, 5.87270972400275316115610754880, 6.26355891509072509362289536599, 7.13197902199078744793878474344, 8.023493134001563185432457015769, 9.149268852364937293395137479901

Graph of the $Z$-function along the critical line