Properties

Label 2-1216-1.1-c3-0-11
Degree $2$
Conductor $1216$
Sign $1$
Analytic cond. $71.7463$
Root an. cond. $8.47032$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 17.2·5-s + 12.3·7-s − 26·9-s − 39.2·11-s − 18.9·13-s − 17.2·15-s + 100.·17-s − 19·19-s + 12.3·21-s − 158.·23-s + 173.·25-s − 53·27-s − 141.·29-s − 215.·31-s − 39.2·33-s − 213.·35-s − 209.·37-s − 18.9·39-s + 276.·41-s + 166.·43-s + 449.·45-s + 60.5·47-s − 190.·49-s + 100.·51-s + 76.2·53-s + 679.·55-s + ⋯
L(s)  = 1  + 0.192·3-s − 1.54·5-s + 0.667·7-s − 0.962·9-s − 1.07·11-s − 0.403·13-s − 0.297·15-s + 1.42·17-s − 0.229·19-s + 0.128·21-s − 1.43·23-s + 1.39·25-s − 0.377·27-s − 0.904·29-s − 1.24·31-s − 0.207·33-s − 1.03·35-s − 0.932·37-s − 0.0777·39-s + 1.05·41-s + 0.591·43-s + 1.48·45-s + 0.187·47-s − 0.554·49-s + 0.274·51-s + 0.197·53-s + 1.66·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1216\)    =    \(2^{6} \cdot 19\)
Sign: $1$
Analytic conductor: \(71.7463\)
Root analytic conductor: \(8.47032\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1216,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7898566523\)
\(L(\frac12)\) \(\approx\) \(0.7898566523\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + 19T \)
good3 \( 1 - T + 27T^{2} \)
5 \( 1 + 17.2T + 125T^{2} \)
7 \( 1 - 12.3T + 343T^{2} \)
11 \( 1 + 39.2T + 1.33e3T^{2} \)
13 \( 1 + 18.9T + 2.19e3T^{2} \)
17 \( 1 - 100.T + 4.91e3T^{2} \)
23 \( 1 + 158.T + 1.21e4T^{2} \)
29 \( 1 + 141.T + 2.43e4T^{2} \)
31 \( 1 + 215.T + 2.97e4T^{2} \)
37 \( 1 + 209.T + 5.06e4T^{2} \)
41 \( 1 - 276.T + 6.89e4T^{2} \)
43 \( 1 - 166.T + 7.95e4T^{2} \)
47 \( 1 - 60.5T + 1.03e5T^{2} \)
53 \( 1 - 76.2T + 1.48e5T^{2} \)
59 \( 1 - 575.T + 2.05e5T^{2} \)
61 \( 1 - 91.0T + 2.26e5T^{2} \)
67 \( 1 + 444.T + 3.00e5T^{2} \)
71 \( 1 - 943.T + 3.57e5T^{2} \)
73 \( 1 + 569.T + 3.89e5T^{2} \)
79 \( 1 + 336.T + 4.93e5T^{2} \)
83 \( 1 - 603.T + 5.71e5T^{2} \)
89 \( 1 - 1.63e3T + 7.04e5T^{2} \)
97 \( 1 - 319.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.197398166816076848853812137461, −8.204808452851937649675489846950, −7.86015310129791423137485735319, −7.31264805971668257374168860701, −5.78175010426549687860910451416, −5.13564065508851172415181808178, −4.00671011750871063449759003133, −3.28195956610430084038990752289, −2.13161113561608785090475217708, −0.42794692993666081577960750222, 0.42794692993666081577960750222, 2.13161113561608785090475217708, 3.28195956610430084038990752289, 4.00671011750871063449759003133, 5.13564065508851172415181808178, 5.78175010426549687860910451416, 7.31264805971668257374168860701, 7.86015310129791423137485735319, 8.204808452851937649675489846950, 9.197398166816076848853812137461

Graph of the $Z$-function along the critical line