L(s) = 1 | + (−0.707 + 0.707i)3-s + (−0.707 − 0.707i)7-s − 1.00i·9-s + (−1.22 − 1.22i)13-s − 1.73·19-s + 1.00·21-s + (0.707 + 0.707i)27-s − 1.73i·31-s + 1.73·39-s + (0.707 − 0.707i)43-s + (1.22 − 1.22i)57-s − 61-s + (−0.707 + 0.707i)63-s + (0.707 + 0.707i)67-s − 1.00·81-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)3-s + (−0.707 − 0.707i)7-s − 1.00i·9-s + (−1.22 − 1.22i)13-s − 1.73·19-s + 1.00·21-s + (0.707 + 0.707i)27-s − 1.73i·31-s + 1.73·39-s + (0.707 − 0.707i)43-s + (1.22 − 1.22i)57-s − 61-s + (−0.707 + 0.707i)63-s + (0.707 + 0.707i)67-s − 1.00·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.189 + 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.189 + 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3997793779\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3997793779\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (1.22 + 1.22i)T + iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + 1.73T + T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + 1.73iT - T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (1.22 - 1.22i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.943433583213664888760250732967, −9.158977486088443733946571229179, −8.043636083731500701590825307348, −7.12984549875468756413623845312, −6.28603028987181629862329901729, −5.49503268003706286822728789254, −4.48889629249691705884979550839, −3.75335578319457017535164966779, −2.55360387859411942940465678206, −0.35899072273799486367585526515,
1.84433059421072079853506284368, 2.74830163598140355564122869026, 4.33958209335588569819012305705, 5.14904439404301878634029332539, 6.25329938941199050081285913228, 6.66925931155751812537188691646, 7.53420922069594823484449656242, 8.597826089865494577776182979791, 9.308454451316691104724479295156, 10.24818741350516769620967862965