L(s) = 1 | + (−0.707 + 0.707i)3-s + (−0.707 − 0.707i)7-s − 1.00i·9-s + (1.22 + 1.22i)13-s + 1.73·19-s + 1.00·21-s + (0.707 + 0.707i)27-s + 1.73i·31-s − 1.73·39-s + (0.707 − 0.707i)43-s + (−1.22 + 1.22i)57-s − 61-s + (−0.707 + 0.707i)63-s + (0.707 + 0.707i)67-s − 1.00·81-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)3-s + (−0.707 − 0.707i)7-s − 1.00i·9-s + (1.22 + 1.22i)13-s + 1.73·19-s + 1.00·21-s + (0.707 + 0.707i)27-s + 1.73i·31-s − 1.73·39-s + (0.707 − 0.707i)43-s + (−1.22 + 1.22i)57-s − 61-s + (−0.707 + 0.707i)63-s + (0.707 + 0.707i)67-s − 1.00·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.793 - 0.608i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.793 - 0.608i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8291653577\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8291653577\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (-1.22 - 1.22i)T + iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 - 1.73T + T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - 1.73iT - T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-1.22 + 1.22i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08507196645866072445573421240, −9.325262658929576262135558019633, −8.696971499392248197459982456699, −7.29534516278457919504371112267, −6.66738458061285020198690160939, −5.84715618838192820591675114199, −4.88567892708054104560994094378, −3.89028868211495220529802022498, −3.26709994203518284727793812159, −1.22464184173182622059227492847,
1.02774388645613217780550038082, 2.56986317391321156244771585004, 3.55209047825886709964711488501, 5.04261065647822190147318681762, 5.89679762857214034794512502421, 6.22961836130339649427774596142, 7.48673346989188746276426712887, 8.002498012967468546610284351927, 9.082636131720859082930885620306, 9.877385643951298330637270979361