# Properties

 Label 2-1200-5.3-c2-0-12 Degree $2$ Conductor $1200$ Sign $-0.326 - 0.945i$ Analytic cond. $32.6976$ Root an. cond. $5.71818$ Motivic weight $2$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (1.22 + 1.22i)3-s + (−3.22 + 3.22i)7-s + 2.99i·9-s + 6.89·11-s + (18.1 + 18.1i)13-s + (−0.449 + 0.449i)17-s + 9.89i·19-s − 7.89·21-s + (−10.6 − 10.6i)23-s + (−3.67 + 3.67i)27-s − 36.2i·29-s − 25.6·31-s + (8.44 + 8.44i)33-s + (13.3 − 13.3i)37-s + 44.3i·39-s + ⋯
 L(s)  = 1 + (0.408 + 0.408i)3-s + (−0.460 + 0.460i)7-s + 0.333i·9-s + 0.627·11-s + (1.39 + 1.39i)13-s + (−0.0264 + 0.0264i)17-s + 0.520i·19-s − 0.376·21-s + (−0.463 − 0.463i)23-s + (−0.136 + 0.136i)27-s − 1.25i·29-s − 0.828·31-s + (0.256 + 0.256i)33-s + (0.359 − 0.359i)37-s + 1.13i·39-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.326 - 0.945i)\, \overline{\Lambda}(3-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.326 - 0.945i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$1200$$    =    $$2^{4} \cdot 3 \cdot 5^{2}$$ Sign: $-0.326 - 0.945i$ Analytic conductor: $$32.6976$$ Root analytic conductor: $$5.71818$$ Motivic weight: $$2$$ Rational: no Arithmetic: yes Character: $\chi_{1200} (193, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 1200,\ (\ :1),\ -0.326 - 0.945i)$$

## Particular Values

 $$L(\frac{3}{2})$$ $$\approx$$ $$1.975408545$$ $$L(\frac12)$$ $$\approx$$ $$1.975408545$$ $$L(2)$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1$$
3 $$1 + (-1.22 - 1.22i)T$$
5 $$1$$
good7 $$1 + (3.22 - 3.22i)T - 49iT^{2}$$
11 $$1 - 6.89T + 121T^{2}$$
13 $$1 + (-18.1 - 18.1i)T + 169iT^{2}$$
17 $$1 + (0.449 - 0.449i)T - 289iT^{2}$$
19 $$1 - 9.89iT - 361T^{2}$$
23 $$1 + (10.6 + 10.6i)T + 529iT^{2}$$
29 $$1 + 36.2iT - 841T^{2}$$
31 $$1 + 25.6T + 961T^{2}$$
37 $$1 + (-13.3 + 13.3i)T - 1.36e3iT^{2}$$
41 $$1 + 3.10T + 1.68e3T^{2}$$
43 $$1 + (2.72 + 2.72i)T + 1.84e3iT^{2}$$
47 $$1 + (37.1 - 37.1i)T - 2.20e3iT^{2}$$
53 $$1 + (-65.1 - 65.1i)T + 2.80e3iT^{2}$$
59 $$1 - 80.3iT - 3.48e3T^{2}$$
61 $$1 - 13.7T + 3.72e3T^{2}$$
67 $$1 + (84.3 - 84.3i)T - 4.48e3iT^{2}$$
71 $$1 + 98.2T + 5.04e3T^{2}$$
73 $$1 + (-52.4 - 52.4i)T + 5.32e3iT^{2}$$
79 $$1 - 68.2iT - 6.24e3T^{2}$$
83 $$1 + (-89.7 - 89.7i)T + 6.88e3iT^{2}$$
89 $$1 + 40.5iT - 7.92e3T^{2}$$
97 $$1 + (-105. + 105. i)T - 9.40e3iT^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−9.612476684701573385801533005609, −9.008397790925584555187321022542, −8.447416251091301310262374864213, −7.35399711316215276931635960546, −6.30914226145723935735824519479, −5.81387707754950799651409222948, −4.28077250410374239958765724571, −3.87001633526596544159031368273, −2.60914190729332968386700622030, −1.44491148853257613938960752596, 0.57429282979663121938557124706, 1.72175750309240181507364025904, 3.27600747922711905009195735092, 3.66558367665814628433992545070, 5.10723166357050988289221628564, 6.11485160325057765988790158427, 6.82007629651085567148950229288, 7.70266743411458723591577926271, 8.500843895067561834304805474641, 9.175950220189939499782876814612