L(s) = 1 | − 2-s + i·3-s + 4-s − i·6-s − 8-s − 9-s + i·12-s + 16-s + (−1 + i)17-s + 18-s + (−1 + i)19-s + (1 + i)23-s − i·24-s − i·27-s + 2i·31-s − 32-s + ⋯ |
L(s) = 1 | − 2-s + i·3-s + 4-s − i·6-s − 8-s − 9-s + i·12-s + 16-s + (−1 + i)17-s + 18-s + (−1 + i)19-s + (1 + i)23-s − i·24-s − i·27-s + 2i·31-s − 32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.584 - 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.584 - 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5317437567\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5317437567\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + iT^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (1 - i)T - iT^{2} \) |
| 19 | \( 1 + (1 - i)T - iT^{2} \) |
| 23 | \( 1 + (-1 - i)T + iT^{2} \) |
| 29 | \( 1 - iT^{2} \) |
| 31 | \( 1 - 2iT - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (-1 - i)T + iT^{2} \) |
| 53 | \( 1 + 2iT - T^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 + (1 - i)T - iT^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.33627604212210333964710070170, −9.348672313368954692765408602787, −8.708829157383072054403462914759, −8.162484288652240273544613677108, −6.97856812361007893798053660801, −6.15953677823768216065772613776, −5.23600874176043722946185523744, −4.02476316341054175305399621095, −3.08946936508653771795112343695, −1.78190024764347450669228785225,
0.61960754735892546299978320216, 2.19716204253244696663132773602, 2.80805086292252744111457222456, 4.53725946997020161386281139161, 5.86256817537407808931962074365, 6.63894696983814711104810248890, 7.22514497544766569979336867921, 8.016274656817931161894764196798, 8.958819518630306750735421541738, 9.251065716201073465975765640428